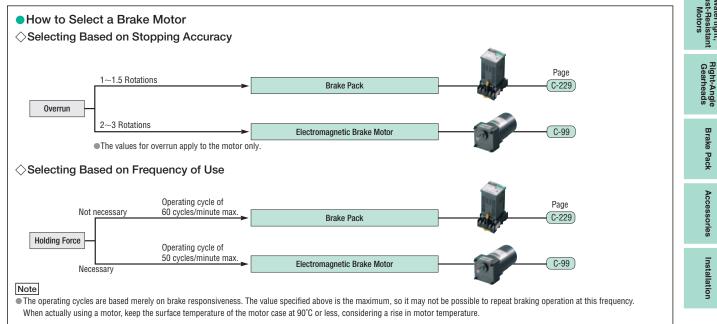
Standard AC Motors

Constant Speed Motors

	Pa
Features and Types of Constant Speed	
Motors	C
How to Read Specifications	C
General Specifications	C
Induction Motors	C
Reversible Motors	C
Electromagnetic Brake Motors	C
V Series	<u> </u>

-10 -12 -16 -19 -73 -99

	Introduction
Induction Motors	Induction Motors
Reversible Motors	Reversible Electromagi Motors Brake Mote Constant Speed Motors
Electromagnetic Brake Motors	Electromagnetic Brake Motors beed Motors
High-Strength, Long Life, Low Noise V Series	V Series
	TM Series Torque Torque Motors
	Torque Motors Motors
	Watertight, Dust-Resistant Motors
	Right-Angle Gearheads
	Brake Pack
	Accessories
	Installation


Features and Types of Constant Speed Motors

Constant speed motors come in various types as shown below. Select from a wide range of products depending on the application, required functions, output, etc.

Types	Features		Frame Size (mm), Output Power	□60	□70	□80		□90		□104
		Series		6 W	15 W	25 W	40 W	60 W	90 W	200 W
	Suitable for applications where the motor is operated continuously in one direction.	World K Series Conforms to safety standards and supports global power supply voltages to allow operation in many countries	lerminal Box	•	•	•	•	•	•	
		around the world.	Type 2-Pole, High-Speed Type			40 W, 60 W			/, 90 W, 50 W	
Induction Motors		✓ Series Adopted High-Strength, Long Life, Low Noise gearheads. They also conform to major safety standards and support global power supply voltages.	c¶us ((€) (€)	•	•	•	•	•	•	
Page C-19		BH Series The BH Series achieves a high-output power of 200 W with a frame size of 104 mm. Conforms to safety standard and supports global power supply voltages.	The second secon							•
Reversible Motors	Suitable for applications where the motor must frequently switch direction.	World K Series Conforms to safety standards and supports global power supply voltages to allow operation in many countries around the world.	сЯЦ _{из} (С. Є С	•	•	•	•	•	•	
Page C-73		▼ Series Adopted High-Strength, Long Life, Low Noise gearheads. They also conform to major safety standards and support global power supply voltages.	۵۹۵ us (€) (€) (€) (€) (€) (€) (€) (€) (€) (€)	•	•	•	•	•	•	

Introductior

												2
Types	Features		Frame Size (mm), Output Power	□60	□70	□80		9 0		□104		Induction
51		Series		6 W	15 W	25 W	40 W	60 W	90 W	200 W		
	Suitable for applications in which the load must be held.	World K Series Conforms to safety standards and supports global power supply voltages)) ()) ²⁰ 20								Constant S	Reversible Motors
tors		to allow operation in many countries around the world.									Constant Speed Motors	Electromagnetic Brake Motors
Electromagnetic Brake Motors		V Series Adopted High-Strength, Long Life, Low Noise gearheads. They also conform to major safety standards and support global power supply voltages.	c¶Jus ((€) €	•	•	•	•	•	•			tic s V Series
Electrom		BH Series The BH Series achieves a high-output	€ ۲۹ الع س (€								Torque	TM Series
Page C-99		power of 200 W with a frame size of 104 mm. Conforms to safety standards and supports global power supply voltages.								•	Torque Motors	Torque Motors
												Du

How to Read Specifications

When selecting a motor and gearhead, you should read the specifications to make sure that the motor you select meets the required specifications for your application.

Shown below is an explanation of how you should read the specifications on some important items.

How to Read Motor Specifications

Motor Specifications

Motor Specifications Table (Example)

Specifications – Continuous Rating–@

			Ű					Ū	Ű	
	Product Name and Type per Product Name: Pinion Shaft T er Product Name (): Round Shaft		Output Power	Voltage	Frequency	Current	Starting Torque	Rated Torque	Rated Speed	Capacitor
Lead Wire Type Dimensions ①	Terminal Box Type Dimensions ②	Terminal Box Type Dimensions ③	w	VAC	Hz	А	mN∙m	mN∙m	r/min	μF
				Cingle Dhoos 000	50	0.27	110	205	1200	
TP (41K25GN-CW2E			25	Single-Phase 220	60	0.23	110	170	1450	1.5
(4IK25A-CW2E)	(4IK25A-CW2TE)	_	20	Single-Phase 230	50	0.27	120	205	1200	1.5
				Sillyie-Flidse 250	60	0.23	120	170	1450	

ന

 \bigcirc

3

(5)

①Output Power: The amount of work that can be performed in a given period of time by a motor. It can be used as a reference for motor capability. (2)Current: The current value used by a motor when the motor is producing rated torque.

3 Starting Torque: This term refers to the torque generated the instant a motor starts. If the motor is subjected to a frictional load smaller than this torque, it will start.

(4) Rated Torque: This is the torque generated when a motor is operating most efficiently. Although the maximum torque is far greater, the rated torque should be the highest torque from the standpoint of utility.

⑤Rated Speed: This is the speed of a motor when the motor is generating the rated torque.

(Bating: This is the time that a motor can operate continuously at rated output power (torque). With a continuous rating, a motor can operate continuously.

Electromagnetic Brake (Power off activated type)

Specifications Table (Example)

Motor Product Name	Voltage VAC	Frequency Hz	Current A	Input W	Static Frict mN	
4RK25GN-CW2ME	Single-Phase 220	60				
4RK25A-CW2ME	Cingle Dhoos 020	50	0.05	7	10	00
4KK25A-CW2ME	Single-Phase 230	60	1			

①Static Friction Torque: This refers to the static friction torque of an electromagnetic brake and express the amount of holding torque at the motor output shaft.

1

When a gearhead is attached, calculate the holding torque at the output shaft of the gearhead with the following formula.

Holding torque at the gearhead output shaft	$T_G = 2$	$T_M \times$	i
---	-----------	--------------	---

T_G: Holding torque at the gearhead output shaft

- T_M : Holding torque at the motor output shaft
- *i* : Gear ratio of gearhead

Permissible Overhung Load and Permissible Thrust Load of Motors

Specifications Table for Permissible Overhung Load (Example) 1

	Motor		Permissible Ov	erhung Load N	
Frame Size	Output Shaft Diameter	Series Name	From the Shaft End	From the Shaft End	
🗌 (mm)	φ (mm)	Selles Maille	10 mm	20 mm	
60	6	World K	50	110	
	Overhung L	oad Thrust Loa 2	d sha d sha d sha d term term the	ne value for the perm re to the left, this ter rhung load applied in ft. missible Thrust Loac n refers to the permis	oad: The value for ① in the table above hissible overhung load. As shown in the m refers to the permissible value of the n a direction perpendicular to the motor d: As shown in the figure to the left, this ssible value of the thrust load applied in a motor shaft. The specification value is of the motor mass.

The calculating method of overhung load applied on the output shaft of the motor is the same as for an output shaft of the gearhead. Refer to the permissible overhung load and permissible thrust load of gearheads for details. Permissible overhung load and permissible thrust load of gearheads → Page C-16

Introduction

Electromagnetic Brake Motors

V Series

TM Series

Torque Motors

Brake

Pack

Acces

sories

Installation

Torque Motors

How to Read Gearhead Specifications

Some gearheads other than those for constant speed motors are listed.

Permissible Torque When Gearhead is Connected

Gearmotor – Torque Table (Example)

◇50 Hz		1)																	Unit :	= N∙m
Product Name	Speed r/min	500	417	300	250	200	167	120	100	83	60	50	42	30	25	20	17	15	12.5	10	8.3
Motor/ Gearhead	Gear Ratio	3	3.6	5	6	7.5	9	12.5	15	18	25	30	36	50	60	75	90	100	120	150	180
4IK25GN-CW2 E 4IK25GN-UW2	4GN⊡S	0.50	0.60	0.83	1.0	1.2	1.5	2.1	2.5	3.0	3.7	4.5	5.4	6.8	8	8	8	8	8	8	8

①Permissible Torque: This refers to the value of the load torque driven by the gearhead's output shaft. Each value is shown for the corresponding gear ratio.

Permissible torque when a gearhead is attached can be calculated with the formula below.

Permissible torque for some models is omitted. In that case, use the formula below to calculate the permissible torque.

Permissible Torque $T_G = T_M \times i \times \eta$

 T_G : Permissible torque of gearhead T_M : Motor torque

i : Gear ratio of gearhead

 η : Gearhead transmission efficiency

Gearhead Transmission Efficiency

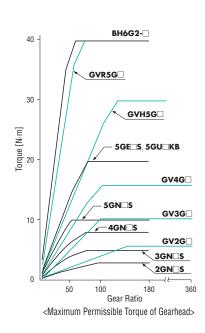
Gear Ratio	3	3.6	5	7.5	9	12.5	15	10	25	30 36 50			60	75	00	100	120	150	100	250	200	260	
Product Name	3	3.0	J	6	/.5	7	12.5	15	10	23	30	30	30	00	/3	30	100	120	150	100	230	300	300
2GN_S, 3GN_S, 4GN_S,					81%						73%						66%						
5GN□S					01%						13%						00%						
5GE_S, 5GU_KB			819	%				73%		66%					59%								
BH6G2-			909	%					86	5%			81%										
$\mathbf{GV2G}$, $\mathbf{GV3G}$, $\mathbf{GV4G}$						9	0%			86%									81%				
GVH5G						90%							8	6%						81%			
GVR5G			90%							86%						81%							

• For BH6G2-_RH and BH6G2-_RA, the gearhead transmission efficiency of all gear ratios is 73% both at the rated and starting speed.

The transmission efficiency of all the decimal gearhead models is 81%.

• For the transmission efficiency of right-angle gearheads, refer to the page for right-angle gearheads. Transmission efficiency of right-angle gearheads -> Page C-216

Gear Ratio Product Name	5	10	15	20	30	50	100	200	Product Name	Gear Ratio	5	10	15	20	30	50	100	200
GFS2G		90	%			86%		81%	GFS2G_FR		80%				85%			
GFS4G	90% 86% 81%					81%	GFS4G_FR		85%									
GFS5G		90	%			86% 81%		81%	GFS5G_FR			85%						
GFS6G		90	%		86	%	8	1%	GFS6G_FR					85%				
									-									


Note

• The transmission efficiency in the table above is the value at room temperature. The transmission efficiency of the gear head varies according to the ambient temperature. Care should be taken when using in a low-temperature environment as the transmission efficiency will drop along with the output torque.

Maximum Permissible Torque

The gearhead output torque increases proportionally as the gear ratio increases. The load torque permissible to the gearhead is saturated at a certain gear ratio because of the gear materials and other conditions. This torque is called the maximum permissible torque.

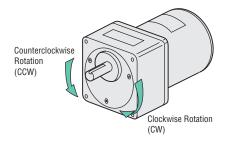
The maximum permissible torque for typical gearheads is shown in the figure to the right.

A code (**T** or **T2**) indicating the terminal box type is entered where the box □ is located within the product name. A number indicating the gear ratio is entered where the box □ is located within the product name.

Constant Speed Motors

Speed and Rotation Direction Gearmotor – Torque Table (Example)

\diamondsuit 50 Hz	1																			Unit =	= N∙m
Product Name	Speed r/min	500	417	300	250	200	167	120	100	83	60	50	42	30	25	20	17	15	12.5	10	8.3
Motor/ Gearhead	Gear Ratio	3	3.6	5	6	7.5	9	12.5	15	18	25	30	36	50	60	75	90	100	120	150	180
4IK25GN-CW2 E 4IK25GN-UW2	4GN⊡S	0.50	0.60	0.83	1.0	1.2	1.5	2.1	2.5	3.0	3.7	4.5	5.4	6.8	8	8	8	8	8	8	8


①Speed: This refers to the speed at the gearhead output shaft. The speeds at respective gear ratios are shown in the table showing the permissible torque when a gearhead is attached.

The speed is calculated by dividing the motor's synchronous speed by the gear ratio of the gearhead. The actual speed is 2 to 20% less than the displayed value depending on the load.

The speed is calculated with the following formula.

Speed $N_G = \frac{N_M}{i}$ N_G : Gearhead speed [r/min] N_M : Motor speed [r/min] i : Gear ratio of gearhead

②Rotation Direction: This refers to the rotation direction viewed from the output shaft. A colored background in the table below indicates gear shaft rotation in the same direction as the motor shaft, while the others rotate in the opposite direction. The rotation direction of the gearhead shaft may differ from the motor shaft rotation direction depending on the gear ratio of the gearhead. The gear ratio and rotation direction of each gearhead are shown in the table below.

\diamondsuit Gear Ratio and Rotation Direction of Gearheads

: Same direction as the motor : Opposite direction to the motor

3	36	5	6	75	0	12 5	15	18	25	30	36	50	60	75	90	100	120	150	180	250	300	360
Ŭ	0.0	5	Ŭ	/.5	1	12.0			20	00		50		/ 3			120	150		200	000	000
										•												
	3	3 3.6	3 3.6 5	3 3.6 5 6	3 3.6 5 6 7.5	3 3.6 5 6 7.5 9	3 3.6 5 6 7.5 9 12.5	3 3.6 5 6 7.5 9 12.5 15	3 3.6 5 6 7.5 9 12.5 15 18	3 3.6 5 6 7.5 9 12.5 15 18 25	3 3.6 5 6 7.5 9 12.5 15 18 25 30	3 3.6 5 6 7.5 9 12.5 15 18 25 30 36	3 3.6 5 6 7.5 9 12.5 15 18 25 30 36 50	3 3.6 5 6 7.5 9 12.5 15 18 25 30 36 50 60	3 3.6 5 6 7.5 9 12.5 15 18 25 30 36 50 60 75	3 3.6 5 6 7.5 9 12.5 15 18 25 30 36 50 60 75 90	3 3.6 5 6 7.5 9 12.5 15 18 25 30 36 50 60 75 90 100	3 3.6 5 6 7.5 9 12.5 15 18 25 30 36 50 60 75 90 100 120	3 3.6 5 6 7.5 9 12.5 15 18 25 30 36 50 60 75 90 100 120 150	3 3.6 5 6 7.5 9 12.5 15 18 25 30 36 50 60 75 90 100 120 150 180	3 3.6 5 6 7.5 9 12.5 15 18 25 30 36 50 60 75 90 100 120 150 180 250	3 3.6 5 6 7.5 9 12.5 15 18 25 30 36 50 60 75 90 100 120 150 180 250 300 <t< th=""></t<>

Connection of a decimal gearhead to these gearheads reduces the speed by 1:10. The rotation direction is not affected.

Product Name	Gear Ratio	5	10	15	20	30	50	100	200
GFS2G									
GFS4G									
GFS5G									
GFS6G									

Permissible Overhung Load and Permissible Thrust Load of Gearheads Specifications Table for Permissible Overhung Load and Permissible Thrust Load (Example)

				1	2	
Product Name	Gear Ratio	Maximum Permissible Torque	Maximum Permissible Torque Permissible Overhung Load N			
Product Name	ueal natio	N∙m	10 mm from Shaft End	20 mm from Shaft End	N	
4GN∏S	3~18	8.0	100	150	- 50	
40N_5	5 25~180	25~180		200	300	

Permissible Overhung Load: The value ① shown in the table above is the value for the permissible overhung load. As shown in the figure to the right, this term refers to the permissible value of the overhung load applied in a direction perpendicular to the gear shaft.

②Permissible Thrust Load: The value ② shown in the table above is the value for the permissible thrust load. As shown in the figure to the right, this term refers to the permissible value of the thrust load applied in the axial direction to the gear shaft.

When a chain, gear, belt, etc. is used as the transfer mechanism, the overhung load is always applied on the output shaft of the gearhead. The overhung load is calculated with the following formula.

Overhung load $W = \frac{K \times T \times f}{\gamma}$

- W : Overhung load [N]
- K : Load coefficient for drive system (right table)
- T: Torque at gearhead output shaft [N·m]
- f : Service factor
- γ : Effective radius of gear or pulley, etc. [m]

 \bigcirc Load Coefficient for Drive System (K)

Thrust Load

Drive System	K
Chain and Synchronous Belt	1
Gear	1.25
V-belt	1.5
Flat Belt	2.5

\Diamond Service Factor (*f*)

Overhung Load

Gearhead

Load Type	Example	Factor <i>f</i>		
Uniform Load	 Uni-directional Continuous Operation For driving belt conveyors and film rollers that are subject to minimal load change 	1.0		
Slight Impact	Frequent starting and stopping Slight Impact Cam drive and positioning control of inertia body via stepping motor			
Medium Impact	Frequent instantaneous bi-directional operation, starting and stopping of reversible motors Frequent instantaneous stopping of AC motors by brake pack Frequent instantaneous starting and stopping of brushless motors, servo motors	2.0		

Permissible Load Inertia for Gearhead

This refers to the permissible value for the load inertia (J) at the gearhead shaft. Convert the permissible value at the motor shaft into the permissible value at the output shaft of the gearhead with the following formula.

Gear ratio of 1/3 to 1/50 $J_G = J_M \times i^2$ Gear ratio of 1/60 or more $J_G = J_M \times 2500$

 J_G : Permissible load inertia at the gearhead output shaft J (×10⁻⁴ kg·m²)

- J_M : Permissible load inertia at the motor shaft J (×10⁻⁴ kg·m²)
- *i* : Gear ratio (Example: i=3 means a gear ratio of 1/3)

Permissible Load Inertia at the Motor Shaft (Example)

Number of Phases	Frame Size	Output Power	Permissible Load Inertia at the Motor Shaft $J(\times 10^{-4} \text{ kg} \cdot \text{m}^2)$
Single-Phase	80 mm Sq.	25 W	0.31

For some products such as combination types, the permissible load inertia at the gearhead output shaft is shown as a direct specifications value for each gear ratio.

A number indicating the gear ratio is entered where the box
is located within the product name.

Introduction

V Series

Torque Motors

Installation

General Specifications

Some specifications other than the constant speed motors are listed.

Permissible Overhung Load and Permissible Thrust Load of Motors

Permissible Overhung Load

	Motor	Permissible Overhung Load N			
Frame Size	Output Shaft Diameter	Series Name	10 mm from Shaft End	20 mm from Shaft End	
🗌 (mm)	ф (mm)	JEHES Maille		20 min nom Shart Lifu	
60	6	World K	50	110	
70	6	World K	40	60	
80	8	World K	90	140	
90	10	World K	140	200	
90	12	World K	240	270	
104	14	BH, BHF	320	350	

Permissible Thrust Load

Permissible Thrust Load: Avoid thrust loads as much as possible. If thrust load is unavoidable, keep it to half or less of the motor mass.

Permissible Overhung Load and Permissible Thrust Load of Gearheads

Product Name Gear Ratio		Maximum Permissible Torque	Permissible Ov	Permissible Thrust Loa		
	N∙m	10 mm from Shaft End	20 mm from Shaft End	N		
GN_S	3~18	- 3.0 -	50	80	30	
GN_5	25~180	3.0	120	180		
GN□S	3~18	- 5.0 -	80	120	40	
GN_5	25~180	5.0	150	250	40	
GN⊒S	3~18	- 8.0 -	100	150	50	
GN_5	25~180	0.0	200	300	50	
GN⊒S	3~18	- 10 -	250	350	100	
GN_5	25~180		300	450	100	
05-0	3~9		400	500		
GE⊡S GU⊡KB	12.5~18	20	450	600	150	
	25~180] [500	700		
	5~9		100	150		
V2G	12.5~25	6.0	150	200	40	
	30~360	1	200	300		
	5~9		150	200		
V3G	i⊡ 12.5~25 30~360	10	200	300	80	
			300	400		
	5~9		200	250		
V4G⊡	12.5~25	16	300	350	100	
	30~360		450	550		
	5~9		400	500		
VH5G	12.5~18	30	450	600	150	
	25~300		500	700		
	5~9		400	500		
VR5G	12.5~18	40	450	600	150	
	25~180		500	700		
	3~36	10	550	800		
6H6G2-□	50~180	- 40 -	650	1000	200	
	5~36		1200*	1100*		
H6G2-⊡RH	50~180	- 60 -	2200*	2000*	300	
	5~36	00	900	1000		
H6G2-□RA	50~180	- 60 -	1700	1850	300	
	3~18		100	150	=-	
PW425□	25~180	- 8.0 -	200	300	50	
	3~18		250	350	100	
PW540	25~180	- 10 -	300	450	100	
	3~9		400	500		
PW560	12.5~18	15	450	600	150	
	25~180		500	700	100	
	3~9		550	800		
PW690	12.5~180	- 30	650	1000	200	

● For the permissible overhung load and permissible thrust load of right-angle gearheads, refer to the page where the products are listed. → Page C-215

* With BH6G2-□RH, the permissible overhung load is for the distance measured from the flange-installation surface. The permissible overhung load at each distance can also be calculated with a formula. → Page C-17

ullet A number indicating the gear ratio is entered where the box \Box is located within the product name.

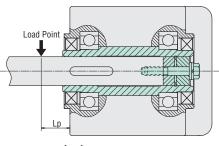
\diamondsuit Calculating the Permissible Overhung Load for the Hollow Shaft Type

When one end of the load shaft is not supported by a bearing unit as shown in the figure to the right, calculate the permissible overhung load using the following formula.

(This mechanism experiences the highest amount of overhung load.)

● BH6G2-□RH

$\bullet {\mbox{Gear}}$ Ratio of ${\bf 5}$ to ${\bf 36}$


Permissible Overhung Load $W[N] = \frac{87.5}{87.5 + L_P} \times 1350 [N]$

1350 [N]: Permissible overhung load at the flange-installation surface

•Gear Ratio of 50 to 180

Permissible Overhung Load $W[N] = \frac{87.5}{87.5 + L_P} \times 2450 [N]$

2450 [N]: Permissible overhung load at the flange-installation surface

Lp [mm]: Distance from flange-installation surface to overhung load point

Permissible Load Inertia: J of Gearhead

When a high load inertia (J) is connected to a gearhead, high torque is exerted instantaneously on the gearhead during starting in frequent, intermittent operations (or during stopping by an electromagnetic brake or instantaneous stopping by a brake pack). Excessive impact shocks can cause damage to the gearhead or motor.

The table below gives values for the permissible load inertia at the motor shaft. Use the motor and gearhead within these parameters. The permissible load inertia for three-phase motors is the value when reversing after a stop.

The permissible load inertia (J) at the output shaft of the gearhead is calculated with the formula below.

The life of a gearhead when operating at the permissible load inertia with instantaneous stopping of electromagnetic brake motors, brake pack or speed control motors is approximately two million cycles.

Permissible Load Inertia at the Gearhead Output Shaft

Gear ratio of 1/3 to 1/50	$J_G = J_M \times i^2$
Gear ratio of 1/60 or higher	$J_G = J_M \times 2500$

- J_{G} : Permissible load inertia at the gearhead output shaft J (×10⁻⁴ kg·m²)
- J_M : Permissible load inertia at the motor shaft J (×10⁻⁴ kg·m²)
- *i* : Gear ratio (Example: i=3 means a gear ratio of 1/3)

Permissible Load Inertia at the Motor Shaft

Number of Phases	Frame Size	Output Power (W)	Permissible Load Inertia at the Motor Shaft $J(\times 10^{-4} \text{ kg} \cdot \text{m}^2)$
	60 mm Sq.	6	0.062
	70 mm Sq.	15	0.14
	80 mm Sq.	25	0.31
Single-Phase		40	0.75 (1.1)*
	90 mm Sq.	60	1.1
		90	1.1
	104 mm Sq.	200	2
	60 mm Sq.	6	0.062
	70 mm Sq.	15	0.14
	80 mm Sq.	25	0.31
Three-Phase		40	0.75 (1.1)*
	90 mm Sq.	60	1.1
		90	1.1
	104 mm Sq.	200	2

* Values in the brackets are for the V Series.

Installation

Germany: 00800 22 55 66 22 UK/Ireland: 01256-347090 Italy: 02-93906346 France: 01 47 86 97 50 Other Countries: 00800 22 55 66 22