(RoHS) RoHS-Compliant 5-Phase Stepping Motor and Driver Package **CRK Series**

The **CRK** Series is a motor and driver package combining a high-performance, 5-phase stepping motor with a compact, low-vibration microstep driver offering the Smooth Drive Function. Four frame sizes of 20 mm, 28 mm, 42 mm and 60 mm are available, as well as various geared motor units.

List of safety standard approved products (Model, Standards, File No., Certification Body)
 → Page G-10

Stop Position Accuracy

The high-resolution type is designed with a stop position accuracy of 2 arc minutes (0.034°) [standard type: 3 arc minutes (0.05°)]. The reduced error helps improve the positioning accuracy of your equipment.

♦ High-Torque Motor

The high-resolution type and high-torque type adopt a newly designed high-torque motor that widens the range of applications. •The smaller motor allows for compact equipment design. •The motor current is reduced to suppress heat generation.

Example: Avoidance of temperature rise in precision equipment or machinery

Comparison of Speed – Torque Characteristics

The high-resolution type and high-torque type are connected using a connector — a connection method everyone is familiar with. •Desired cable length and type can be selected.

Maintenance becomes easy.

 Motor lead wire/connector assembly (0.6m) is included with motor and driver package.

Features

Newly Designed Motors

- Improved Stopping Accuracy

The positioning accuracy of a stepping motor is affected by friction load.

The high-resolution type achieve high accuracy and reliability based on Oriental Motor's latest precision machining technology. The motor resolution is increased to double the level of a standard model to reduce the displacement angle against load torque, thereby achieve high positioning accuracy. Vibration is also reduced.

TH1: CRK566AP (Standard Type)
 TH2: CRK566PMAP (High-Resolution Type)

Stepping Motors

The **CRK** Series offers models of the high-resolution type, hightorque type and standard type, as well as various geared types. You can find a product meeting your specific torque, resolution or other needs from a wide range of specifications.

Compact, Lightweight Microstep Driver

The driver in the **CRK** Series achieves microstep drive in a compact, lightweight body (Mass: 40 g). A new IC allows the driver to provide various functions, including the following:

Smooth Drive Function

1-pulse/2-pulse input mode switching
25 preset step angles
Power LED
Photocoupler input
Connector with lock (by MOLEX)

♦ Lower Vibration and Noise Achieved by Microstep Drive

The basic step angle of the motor can be divided into a maximum of 250 microstep angles without using any mechanical element such as a reduction gear.

As a result, vibration and noise are further reduced.

$\diamondsuit \mathsf{Smooth}$ Drive Function for Enhanced Ease of Use

The Smooth Drive Function automatically controls operations via microstep drive, at the same travel distance and speed used in the full-step mode, without requiring the operator to change the pulse input settings.

This function is particularly useful when the $\ensuremath{\textbf{CRK}}$ Series is used in the full-step or half-step mode.

Comparison of Vibration Characteristics

\Diamond Compact Size

The compact, lightweight driver in the **CRK** Series is approximately 47% smaller than a conventional full-step driver.

Comparison of Driver Size and Mass

Conforming to Major Safety Standards

The **CRK** Series is UL-recognized and CSA-certified. It also bears the CE Mark as a proof of conformance to the EMC Directives.

Safe operation is ensured anywhere in the world.

• RoHS RoHS-Compliant

The **CRK** Series conforms to the RoHS Directive that prohibits the use of six chemical substances including lead and cadmium. ● Details of RoHS Directive → Page G-23

Useful Accessories

Driver Lead Wire Set
 These lead wires allow for easy
 connection of the motor, power
 supply and input signals without
 crimping. All driver lead wires
 needed to connect the motor,
 power supply and I/O signals are
 combined in a single set. Various
 other parts and accessories useful
 in different applications are also
 available (sold separately).
 Driver lead wire set → Page C-257

Installatior

Wide Variety

The CRK Series motor and driver package comes in four motor frame sizes of 20 to 60 mm, as well as four geared types.

ine (Ensturon				Drivor
	туре	A high torgue motor		20 11111	<u>4</u> 42 IIIIII	
High	n-Resolution Type	A high-torque motor offering higher positioning accuracy with the basic step angle set to 0.36 [°] /step, which is just half the basic step angle of the standard type.				
High	1-Torque Type	A high-torque motor generating high torque of approx. 1.3 to 1.5 times the level achieved by the standard type.		đ		
Star	idard Type	The basic model in the CRK Series offering an optimal balance of torque, low vibration and low noise.				
ash Type	TH Geared Type	A geared motor achieving both low backlash and low cost.				
Low Back	PL Geared Type	A geared motor offering low backlash, high strength and wide gear ratios.			0	
dash Type	PN Geared Type	A high-accuracy, high strength geared motor achieving a backlash of 3 arc minutes or less.		5	3	
Non-Back	Harmonic Geared Type	A high-accuracy, backlash-free geared motor adopting a newly developed harmonic gear. It ensures high strength in a compact body.	0			

Characteristics Comparison for Geared Motors

	Geared Type	Features	Permissible Torque/ Maximum Torque [N·m]	Backlash [arc min]	Basic Resolution [deg/step]	Output Shaft Speed [r/min]	Notors
Type	0	 A wide variety of low gear ratios for high-speed operation Gear ratios: 1:3.6, 1:7.2, 1:10, 1:20, 1:30 	4	60	0.024	500	
Low Backlash	TH Geared (Parallel Shaft)	 High permissible torque A wide variety of gear ratios for selecting the desired the particular 	8	35	0.0144	360	Introduction
	PL Geared (Planetary Gear)	 Centered output shaft Gear ratios: 1:5, 1:7.2, 1:10, 1:25, 1:36, 1:50 					AC Input
ash Type	PN Geared (Planetary Gear)	 High speed (low gear ratio), high positioning precision High permissible/maximum torque A wide variety of gear ratios for selecting the desired step angle Centered output shaft Gear ratios: 1:5 1:7 2 1:10 1:25 1:36 1:50 	Permissible Maximum Torque Torque 8 20	3	0.0144	600	CKSTEP ASC DC Input
Non-Backle		 High positioning precision High permissible/maximum torque High gear ratio, high resolution 	Permissible Maximum Torque Torque 8 28	0	0.0072	70	5-Phase RK AC Input
	Harmonic Geared (Harmonic Drive)	Centered output shaft Gear ratios: 1:50, 1:100					5-Phas CRK

Note:

• The values shown above must be used as reference. These values vary depending on the frame size and gear ratio.

2-Phase CSK

2-Phase Stepping Motors

5-Phase Stepping Motors

Controllers

Accessories

Installation

System Configuration

An example of a system configuration with the $\ensuremath{\textbf{SG8030JY}}$ controller.

No.	Product Name	Overview	Page
1	Controller	This controller outputs pulse commands that determine the rotating amount and rotating speed.	C-248
2	Motor Mounting Brackets	Dedicated mounting bracket for the motor.	C-266
3	Flexible Couplings	Coupling that connects the motor shaft to the driven shaft.	C-258
4	Clean Dampers	Dedicated damper for suppressing stepping motor vibration.	C-264
5	Driver Lead Wire Set	Cables for connecting the driver and motor, DC power supply or host controller (0.6 m).	C-257
6	Motor Lead Wire/Connector Assembly	Lead wire with a connector crimped for connector-coupled motors (0.6 m, 1 m).	C-255
\bigcirc	Motor Connector Set	Set of connector housings and contacts for use with connector-coupled motors (for 30 units).	C-255

•Example of System Configuration

CRK566PMBP		SG8030JY-U	PAL2P-5	MCS300808	D6CL-8.0F	LCS04SD5
CRK Series	+	Controller	Motor Mounting Bracket	Flexible Coupling	Clean Damper	Driver Lead Wire Set (0.6 m)
(Body)		(Sold separately)				

The system configuration shown above is an example. Other combinations are available.

Product Number Code

High-Resolution	Type/High-	Torque	Type/Standard	Туре

<u>CRK</u>	5	4	4	Ρ	M	Α	P
\bigcirc	\bigcirc	3	4	(5)	6	$\overline{\mathcal{O}}$	ര

Geared Type <u>CRK 5 2 3 P A P-N 7.2</u> 1 2 3 4 5 6 7 8 (9)

1	Series	CRK: CRK Series
2	5: 5-Phase	
3	Motor Frame Size	1: 20 mm 2: 28 mm 4: 42 mm 6: 60 mm
4	Motor Case Length	
5	Motor Type	
6	Resolution	M: High-Resolution
0	Motor Shaft Type	A: Single Shaft B: Double Shaft
8	Signal I/O Mode of Driver	P: Photocoupler

1	Series	CRK: CRK Series
2	5: 5-Phase	
3	Motor Frame Size	1:20 mm 2:28 mm 4:42 mm 6:60 mm
4	Motor Case Length	
(5)	Motor Type	
6	Motor Shaft Typ	A: Single Shaft B: Double Shaft
0	Signal I/O Mode of Driver	P: Photocoupler
8	Gearhead Type	T: TH Geared Type N: PN Geared Type H: Harmonic Geared Type
9	Gear Ratio	

Model (Double Shaft)

CRK545BP-P5

CRK545BP-P7.2

CRK545BP-P10

CRK543BP-P25

CRK543BP-P36

CRK543BP-P50

CRK566BP-P7.2

CRK566BP-P10

CRK564BP-P25

CRK564BP-P36

CRK564BP-P50

Model (Double Shaft)

CRK523PBP-N5

CRK523PBP-N7.2

CRK523PBP-N10

CRK544BP-N5

CRK544BP-N7.2

CRK544BP-N10

CRK566BP-N7.2

CRK566BP-N10

CRK564BP-N25

CRK564BP-N36

CRK564BP-N50

Model (Double Shaft)

CRK513PBP-H50

CRK513PBP-H100

CRK566BP-N5

CRK566BP-P5

Product Line

Model (Single Shaft)	Model (Double Shaft)		
CRK523PMAP	CRK523PMBP		
CRK524PMAP	CRK524PMBP		
CRK525PMAP	CRK525PMBP		
CRK544PMAP	CRK544PMBP		
CRK546PMAP	CRK546PMBP		
CRK564PMAP	CRK564PMBP		
CRK566PMAP	CRK566PMBP		
CRK569PMAP	CRK569PMBP		
High-Torque Type			
Model (Single Shaft)	Model (Double Shaft)		
CRK513PAP	CRK513PBP		
CRK523PAP	CRK523PBP		
CRK525PAP	CRK525PBP		
CRK544PAP	CRK544PBP		
CRK546PAP	CRK546PBP		
Model (Single Shaft)	Model (Double Shaft)		
CRK543AP	CRK543BP		
CRK544AP	CRK544BP		
CRK545AP	CRK545BP		
CRK564AP	CRK564BP		
CRK566AP	CRK566BP		
CRK569AP	CRK569BP		
TH Geared Type			
Model (Single Shaft)	Model (Double Shaft)		
CRK523PAP-T7.2	CRK523PBP-T7.2		
CRK523PAP-T10	CRK523PBP-T10		
CRK523PAP-T20	CRK523PBP-T20		
CRK523PAP-T30	CRK523PBP-T30		
CRK543AP-T3.6	CRK543BP-T3.6		
CRK543AP-T7.2	CRK543BP-T7.2		
CRK543AP-T10	CRK543BP-T10		
CRK543AP-T20	CRK543BP-T20		
CRK543AP-T30	CRK543BP-T30		
CRK564AP-T3.6	CRK564BP-T3.6		
CRK564AP-T7.2	CRK564BP-T7.2		
	CDV564PD T10		
CRK564AP-T10	CKK304BP-110		
CRK564AP-T10 CRK564AP-T20	CRK564BP-T20		

-	Introductio
-	ň
-	
_	-

QSTEP AS

Stepping Motors

CRK543AP-H50	CRK543BP-H50			
CRK543AP-H100	CRK543BP-H100			
CRK564AP-H50	CRK564BP-H50			
CRK564AP-H100	CRK564BP-H10			
owing items are included in each p Parallel Key*1, Driver, Driver Conn bly#2, Operating Manual	oroduct. ector, Motor Lead Wire/Connector			

Assemb

The foll

Motor.

• PL Geared Type

Model (Single Shaft)

CRK545AP-P5

CRK545AP-P7.2

CRK545AP-P10

CRK543AP-P25

CRK543AP-P36

CRK543AP-P50

CRK566AP-P7.2

CRK566AP-P10

CRK564AP-P25

CRK564AP-P36

CRK564AP-P50

Model (Single Shaft)

CRK523PAP-N5

CRK523PAP-N7.2

CRK523PAP-N10

CRK544AP-N7.2

CRK544AP-N10

CRK566AP-N7.2

CRK566AP-N10

CRK564AP-N25

CRK564AP-N36

CRK564AP-N50

CRK513PAP-H50

CRK513PAP-H100

Harmonic Geared Type Model (Single Shaft)

CRK566AP-N5

CRK544AP-N5

PN Geared Type

CRK566AP-P5

*1 Only for the products with a key slot on the output shaft

*2 Only for connector-coupled motor

High-Resolution Type Motor Frame Size 28 mm, 42 mm

Specifications (RoHS)

Specification											
Madal	Single S	haft	CRK523PMAP*	CRK524PMAP*	CRK525PMAP*	CRK544PMAP*	CRK546PMAP*				
WOUEI	Double S	Shaft	CRK523PMBP*	CRK524PMBP*	CRK525PMBP*	CRK544PMBP*	CRK546PMBP*				
Maximum Holding Torque		N∙m	0.042	0.061	0.09	0.24	0.42				
Rotor Inertia	J:	kg∙m²	9×10 ⁻⁷	13×10 ⁻⁷	19×10 ⁻⁷	60×10 ⁻⁷	121×10-7				
Rated Current	A/	Phase	0.35 0.75								
Basic Step Angle				0.36°							
Power Source				24 VDC±10% 0.7 A		24 VDC±1	0% 1.4 A				
Excitation Mode					Microstep						
Mooo	Motor	kg	0.11	0.15	0.2	0.3	0.5				
IVIASS	Driver	kg	0.04								
Dimension No.	Motor		2 3								
	Driver										

66

How to read specifications table → Page C-10

*Motor lead wire/connector assembly (0.6 m) is included with the motor and driver package of connector-coupled type.

Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under (Under 75°C is required to comply with UL or CSA Standards as the motor is recognized as insulation class A.)

• The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 50%.

Introduction

AS No.

High-Resolution Type Motor Frame Size 60 mm

Specifications (RoHS)

-				
Madal	Single Shaft	CRK564PMAP*	CRK566PMAP*	CRK569PMAP*
Model	Double Shaft	CRK564PMBP*	CRK566PMBP*	CRK569PMBP*
Maximum Holding Torque	N∙m	0.78	1.3	2.3
Rotor Inertia	J: kg•m²	320×10 ⁻⁷	500×10 ⁻⁷	1100×10 ⁻⁷
Rated Current	A/Phase		1.4	
Basic Step Angle				
Power Source			24 VDC±10% 2.5 A	
Excitation Mode			Microstep	
Maaa	Motor kg	0.65	0.87	1.5
Wass	Driver kg	0.04		
Dimension No.	Motor			
Dimension No.	Driver		18	
Maximum Holding Torque Rotor Inertia Rated Current Basic Step Angle Power Source Excitation Mode Mass Dimension No.	Motor kg Motor kg Motor Jriver kg Motor	0.78 320×10 ⁻⁷	1.3 500×10 ⁻⁷ 1.4 0.36° 24 VDC±10% 2.5 A Microstep 0.87 0.04 ④	2.3 1100×10 ⁻⁷

CRK564PMAP/CRK564PMBP

Current: 1.4 A/Phase Step Angle: 0.36° /step With Damper **D6CL-8.0F**: JL=140×10⁻⁷kg·m² 0.8 [N·m] 2 0.6 Pullout Torque 0.4 Current [A] 0.2 1 Driver Input Current 0 Speed [r/min] 0 (0) 10 (100) 15 Resolution1 (150) (Resolution10) 5 (50) Pulse Speed [kHz]

CRK569PMAP/CRK569PMBP

The pulse input circuit responds to approximately 500 kHz with a pulse duty of 50%.

Notes:

 Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C. (Under 75°C is required to comply with UL or CSA Standards as the motor is recognized as insulation class A.)

• The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 50%.

High-Torque Type Motor Frame Size 20 mm, 28 mm, 42 mm

Specifications (RoHS)

Madal	Single St	naft	CRK513PAP*	CRK523PAP*	CRK525PAP*	CRK544PAP*	CRK546PAP*				
Wodel	Double Shaft		CRK513PBP*	P* CRK523PBP* CRK525PBP*		CRK544PBP*	CRK546PBP*				
Maximum Holding Torque		N∙m	0.0231	0.048	0.078	0.24	0.42				
Rotor Inertia	J:	kg∙m²	2.6×10 ⁻⁷	9×10 ⁻⁷	18×10 ⁻⁷	57×10-7	114×10-7				
Rated Current	A/F	Phase		0.35		0.75					
Basic Step Angle			0.72°								
Power Source				24 VDC±10% 0.7 A		24 VDC±1	24 VDC±10% 1.4 A				
Excitation Mode					Microstep						
Maaa	Motor	kg	0.05	0.11	0.2	0.3	0.5				
Mass	Driver	kg	0.04								
Dimension No.	Motor		1	[2	3					
Dimension No.	Driver				18						

How to read specifications table → Page C-10

*Motor lead wire/connector assembly (0.6 m) is included with the motor and driver package of connector-coupled type.

Speed - Torque Characteristics How to read speed - torque characteristics -> Page C-10

CRK523PAP/CRK523PBP

CRK525PAP/CRK525PBP

CRK546PAP/CRK546PBP

ent: 0.35 A/Phase Step Angle: 0.72°/step Namper **D4CL-5.0F**: JL=34×10⁻⁷kg m 0.0 0.0 0.0 [N·m] 0.03 Forgue 0.0 1.0 Current [A] 0.0 Speed [r/min] 0(0) 30 (300) 20 (200) 10 (100) Pulse Speed [kHz

66

CRK544PAP/CRK544PBP

 The pulse input circuit responds to approximately 500 kHz with a pulse duty of 50%. Notes:

• Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C. (Under 75°C is required to comply with UL or CSA Standards as the motor is recognized as insulation class A.)

The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 50%.

The arrest's automatic current curback runction at motor stands in reduces maximum notality torque by approximately 50%

Standard Type Motor Frame Size 42 mm, 60 mm

Specifications (RoHS) CRK569AP Single Shaft CRK543AP CRK544AP CRK545AP CRK564AP CRK566AP Model CRK569BP Double Shaft CRK543BP CRK544BP CRK545BP CRK564BP CRK566BP Maximum Holding Torque N∙m 0.13 0.18 0.24 0.42 0.83 1.66 35×10 54×10 68×10 175×10-280×10 560×10⁻¹ Rotor Inertia J: ka•m Rated Current A/Phase 0.75 14 Basic Step Angle 0.72 Power Source 24 VDC±10% 1.4 A 24 VDC±10% 2.5 A Microstep Excitation Mode Motor 0.21 0.27 0.35 0.6 0.8 1.3 kg Mass 0.04 Driver kg 5 6 Motor Dimension No. Driver 18

How to read specifications table → Page C-10

Speed – Torque Characteristics

CRK543AP/CRK543BP

CRK545AP/CRK545BP

CRK566AP/CRK566BP

CRK564AP/CRK564BP

CRK569AP/CRK569BP

The pulse input circuit responds to approximately 500 kHz with a pulse duty of 50%.
 Notes:

• Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C. (Under 75°C is required to comply with UL or CSA Standards as the motor is recognized as insulation class A.)

• The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 50%.

Accessories

Controllers

5-Phase Stepping Motors

Introduction

AC Input

C(STEP ASC DC Input

AC Input

-Phase

CRK

TH Geared Type Motor Frame Size 28 mm

Specifications (RoHS)

Madal	Single Shaft	CRK523PAP-T7.2*	CRK523PAP-T10*	CRK523PAP-T20*	CRK523PAP-T30*			
Model	Double Shaft	CRK523PBP-T7.2*	CRK523PBP-T10*	CRK523PBP-T20*	CRK523PBP-T30*			
Maximum Holding Torque	N∙r	n 0.2	0.3	0.4	0.5			
Rotor Inertia	J: kg•m	2	9×10 ⁷					
Rated Current	A/Phas)	0.35					
Basic Step Angle		0.1°	0.072°	0.036°	0.024°			
Gear Ratio		1 : 7.2	1 : 10	1:20	1:30			
Permissible Torque	N∙r	n 0.2	0.3	0.4	0.5			
Backlash	arc minute (degrees) 60 (1°)							
Permissible Speed Range	r/mi	n 0~416	0~300	0~150	0~100			
Power Source			24 VDC±1	10% 0.7 A				
Excitation Mode			Mici	rostep				
Masa	Motor k]	0	.17				
INIASS	Driver k]	0.04					
Dimension No.	Motor			7				
Dimension No.	Driver			18				

How to read specifications table → Page C-10

*Motor lead wire/connector assembly (0.6 m) is included with the motor and driver package of connector-coupled type.

Note:

• Direction of rotation of the motor and that of the gear output shaft are the opposite for the gear ratios 1:7.2 and 1:10. It is the same for 1:20 and 1:30 gear ratios.

■Speed - Torque Characteristics How to read speed - torque characteristics -> Page C-10

CRK523PAP-T10/CRK523PBP-T10

CRK523PAP-T20/CRK523PBP-T20

CRK523PAP-T30/CRK523PBP-T30

• The pulse input circuit responds to approximately 500 kHz with a pulse duty of 50%.

Notes

Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C. (Under 75°C is required to comply with UL or CSA Standards as the motor is recognized as insulation class A.)

• The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 50%.

TH Geared Type Motor Frame Size 42 mm

Specifications (Bolls)

Madal	Single Shaft	CRK543AP-T3.6	CRK543AP-T7.2	CRK543AP-T10	CRK543AP-T20	CRK543AP-T30				
Wodel	Double Shaft	CRK543BP-T3.6	CRK543BP-T7.2	CRK543BP-T10	CRK543BP-T20	CRK543BP-T30				
Maximum Holding Torque	N∙r	n 0.35	0.7	1	1	.5				
Rotor Inertia	J: kg•m	2		35×10 ⁻⁷						
Rated Current	A/Phas	e		0.75						
Basic Step Angle		0.2°	0.1°	0.072°	0.036°	0.024°				
Gear Ratio		1:3.6	1:7.2	1:10	1:20	1:30				
Permissible Torque	N∙r	n 0.35	0.7	1	1	.5				
Backlash	arc minute (degrees) 45 (0.75°)	25 (0.417°)		15 (0.25°)					
Permissible Speed Range	r/mi	n 0~500	0~250	0~180	0~90	0~60				
Power Source				24 VDC±10% 1.4 A						
Excitation Mode				Microstep						
Maga	Motor k	g		0.35						
IVId55	Driver k	g	0.04							
Dimonoion No	Motor			8						
Dimension NO.	Driver			18						

How to read specifications table → Page C-10

Note

• Direction of rotation of the motor and that of the gear output shaft are the same for the gear ratios 1:3.6, 1:7.2 and 1:10. It is the opposite for 1:20 and 1:30 gear ratios.

Speed – Torque Characteristics

How to read speed – torque characteristics → Page C-10

CRK543AP-T3.6/CRK543BP-T3.6

CRK543AP-T10/CRK543BP-T10

CRK543AP-T30/CRK543BP-T30

• The pulse input circuit responds to approximately 500 kHz with a pulse duty of 50%. Notes

 Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C. (Under 75°C is required to comply with UL or CSA Standards as the motor is recognized as insulation class A.)

The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 50%.

CRK543AP-T7.2/CRK543BP-T7.2

CRK543AP-T20/CRK543BP-T20

2-Phas

Introduction

AC Input AS No.

DC Input

AC Input 5-Phase

TH Geared Type Motor Frame Size 60 mm

Specifications (Bolls)

Single Shaft	CRK564AP-T3.6	CRK564AP-T7.2	CRK564AP-T10	CRK564AP-T20	CRK564AP-T30				
Double Shaft	CRK564BP-T3.6	CRK564BP-T7.2	CRK564BP-T10	CRK564BP-T20	CRK564BP-T30				
N∙m	1.25	2.5	3	3.5	4				
J: kg∙m²		175×10 ⁷							
A/Phase		1.4							
	0.2°	0.1°	0.072°	0.036°	0.024°				
	1:3.6	1:7.2	1:10	1:20	1:30				
N∙m	1.25	2.5	3	3.5	4				
arc minute (degrees)	35 (0.584°)	35 (0.584°) 15 (0.25°) 10 (0.167°)							
r/min	0~500	0~250	0~180	0~90	0~60				
			24 VDC±10% 2.5 A						
			Microstep						
Motor kg			0.95						
Driver kg		0.04							
Motor			9						
Driver			18						
	Single Shaft Double Shaft N·m J: kg·m ² A/Phase A/Phase arc minute (degrees) r/min minute Motor kg Driver kg Motor Driver	Single Shaft CRK 564AP-T3.6 Double Shaft CRK 564BP-T3.6 N·m 1.25 J: kg·m²	Single Shaft CRK564AP-T3.6 CRK564AP-T7.2 Double Shaft CRK564BP-T3.6 CRK564BP-T7.2 N·m 1.25 2.5 J: kg·m²	Single Shaft CRK564AP-T3.6 CRK564AP-T7.2 CRK564AP-T10 Double Shaft CRK564BP-T3.6 CRK564BP-T7.2 CRK564BP-T10 N·m 1.25 2.5 3 J: kg·m²	Single Shaft CRK564AP-T3.6 CRK564AP-T7.2 CRK564AP-T10 CRK564AP-T20 Double Shaft CRK564BP-T3.6 CRK564BP-T7.2 CRK564BP-T10 CRK564BP-T20 N·m 1.25 2.5 3 3.5 J: kg·m²				

How to read specifications table → Page C-10

Note

• Direction of rotation of the motor and that of the gear output shaft are the same for the gear ratios 1:3.6, 1:7.2 and 1:10. It is the opposite for 1:20 and 1:30 gear ratios.

Speed - Torque Characteristics How to read speed - torque characteristics -> Page C-10

CRK564AP-T3.6/CRK564BP-T3.6

CRK564AP-T10/CRK564BP-T10

CRK564AP-T30/CRK564BP-T30

CRK564AP-T20/CRK564BP-T20

• The pulse input circuit responds to approximately 500 kHz with a pulse duty of 50%. Notes

 Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C. (Under 75°C is required to comply with UL or CSA Standards as the motor is recognized as insulation class A.)

• The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 50%.

PL Geared Type Motor Frame Size 42 mm

Specifications (RoHS)

Madal	Single S	haft	CRK545AP-P5	CRK545AP-P7.2	CRK545AP-P10	CRK543AP-P25	CRK543AP-P36	CRK543AP-P50	
Model	Double S	Shaft	CRK545BP-P5	CRK545BP-P7.2	CRK545BP-P10	CRK543BP-P25	CRK543BP-P36	CRK543BP-P50	
Maximum Holding Torque		N∙m	1	1	.5	2.5	:	3	
Rotor Inertia	J:	kg∙m²		68×10 ⁻⁷			35×10 ⁻⁷		
Rated Current	A/	2hase 0.75							
Basic Step Angle			0.144°	0.1°	0.072°	0.0288°	0.02°	0.0144°	
Gear Ratio			1:5	1:7.2	1:10	1:25	1:36	1:50	
Permissible Torque		N∙m	1	1 1.5		2.5	3	3	
Backlash	arc minute (deg	grees)	35 (0.58°)						
Permissible Speed Range		r/min	0~360	0~250	0~180	0~72	0~50	0~36	
Power Source					24 VDC±1	0% 1.4 A			
Excitation Mode					Micro	ostep			
Maga	Motor	kg		0.58		0.55			
WIdss	Driver	kg			0.	04			
Dimension No.	Motor				[0			
	Driver				[8			

How to read specifications table → Page C-10

Note

• Direction of rotation of the motor and that of the gear output shaft are the same.

Speed – Torque Characteristics How to read speed – torque characteristics → Page C-10

CRK545AP-P7.2/CRK545BP-P7.2

CRK545AP-P10/CRK545BP-P10

CRK543AP-P25/CRK543BP-P25

CRK543AP-P36/CRK543BP-P36 CRK543AP-P50/CRK543BP-P50 Current: 0.75 A/Phase Step Angle: 0.0288°/step With Damper **D4CL-5.0F**: $J_L=34\times10^{-7}kg\cdotm^2$ Current: 0.75 A/Phase Step Angle: 0.02°/step With Damper D4CL-5.0F: $J_L{=}34{\times}10^{-7}kg\cdot\text{m}^2$ Current: 0.75 A/Phase Step Angle: 0.0144*/step With Damper D4CL-5.0F: $J_L{=}34{\times}10^{-7}kg\cdotm^2$ Permissible Toro Permissible Torqu Permissible Torque Torque [N·m] Torque [N·m] Toraue [N·m] 4 r Current [A] Current [A] ~ Current [A] Driver Input Current Driver Input Current Driver Input Current Speed [r/min] Speed [r/min] Speed [r/min] 10 (100) 0 (0) 10 (100) 15 (150) Resolution1 (Resolution10 0 (0) 15 (150) Resolution1 (Resolution1) 0 (0) 10 (100) 15 (150) Resolution1 (Resolution10) 5 (50) 5 (50) 5 (50) Pulse Speed [kHz] Pulse Speed [kHz] Pulse Speed [kHz]

 The pulse input circuit responds to approximately 500 kHz with a pulse duty of 50%. Notes

 Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C. (Under 75°C is required to comply with UL or CSA Standards as the motor is recognized as insulation class A.)

The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 50%.

Introduction

Stepping Motors

5-Phase Stepping Motors

PL Geared Type Motor Frame Size 60 mm

Specifications (RoHS)

Madal	Single Sha	aft	CRK566AP-P5	CRK566AP-P7.2	CRK566AP-P10	CRK564AP-P25	CRK564AP-P36	CRK564AP-P50	
wodei	Double Sh	naft	CRK566BP-P5	CRK566BP-P7.2	CRK566BP-P10	CRK564BP-P25	CRK564BP-P36	CRK564BP-P50	
Maximum Holding Torque		N∙m	3.5	4	5		8	-	
Rotor Inertia	J: k	g∙m²	280×10 ⁻⁷ 175×10 ⁻⁷						
Rated Current	A/PI	hase		1.4					
Basic Step Angle			0.144°	0.1°	0.072°	0.0288°	0.02°	0.0144°	
Gear Ratio			1:5	1:7.2	1:10	1:25	1:36	1:50	
Permissible Torque		N∙m	3.5	4	5		8		
Backlash	arc minute (degr	rees)			20 (0).33°)			
Permissible Speed Range	r,	/min	0~360	0~250	0~180	0~72	0~50	0~36	
Power Source					24 VDC±1	0% 2.5 A			
Excitation Mode					Micro	ostep			
Maaa	Motor	kg		1.3			1.4		
WId55	Driver	kg		0.04					
Dimonsion No	Motor		[1]						
Dimension No.	Driver				[8			

How to read specifications table → Page C-10

Note:

• Direction of rotation of the motor and that of the gear output shaft are the same.

Speed - Torque Characteristics How to read speed - torque characteristics -> Page C-10

CRK566AP-P5/CRK566BP-P5

CRK566AP-P7.2/CRK566BP-P7.2

CRK566AP-P10/CRK566BP-P10

CRK564AP-P25/CRK564BP-P25

CRK564AP-P36/CRK564BP-P36

CRK564AP-P50/CRK564BP-P50

 The pulse input circuit responds to approximately 500 kHz with a pulse duty of 50%. Notes:

• Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C. (Under 75°C is required to comply with UL or CSA Standards as the motor is recognized as insulation class A.)

• The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 50%.

PN Geared Type Motor Frame Size 28 mm, 42 mm

Specifications (RoHS)

Madal	Single Shaft	CRK523PAP-N5*	CRK523PAP-N7.2*	CRK523PAP-N10*1	CRK544AP-N5	CRK544AP-N7.2	CRK544AP-N10
woder	Double Shaf	CRK523PBP-N5*	CRK523PBP-N7.2*	CRK523PBP-N10*	CRK544BP-N5	CRK544BP-N7.2	CRK544BP-N10
Maximum Holding Torque	N·	m 0.2	0.3	0.4	0.8	1.2	1.5
Rotor Inertia	J: kg•ı	1 ²	9×10 ⁻⁷			54×10 ⁻⁷	
Rated Current	A/Pha	e	0.35			0.75	
Basic Step Angle		0.144°	0.1°	0.072°	0.144°	0.1°	0.072°
Gear Ratio		1:5	1:7.2	1:10	1:5	1:7.2	1:10
Permissible Torque	N	m 0.2	0.3	0.4	0.8	1.2	1.5
Maximum Torque*2	N·	m	0.5 1.5			:	2
Backlash	arc minute (degree	s)	3 (0.05°) 2 (0.			2 (0.034°)	
Angular Transmission Error	arc minute (degree	s)		6 (0).1°)		
Permissible Speed Range	r/m	in 0~600	0~416	0~300	0~600	0~416	0~300
Power Source			24 VDC±10% 0.7 A			24 VDC±10% 1.4 A	
Excitation Mode				Micro	ostep		
Maaa	Motor	ig	0.25			0.56	
Mass	Driver	ig	0.04				
Dimension No.	Motor		12		13		
Dimension No.	Driver			1	8		

How to read specifications table → Page C-10

*1 Motor lead wire/connector assembly (0.6 m) is included with the motor and driver package of connector-coupled type.

*2 The value of maximum torque is for gear. For output torque for geared motor, see the speed – torque characteristics.

Note:

• Direction of rotation of the motor and that of the gear output shaft are the same.

Speed - Torque Characteristics How to read speed - torque characteristics -> Page C-10

CRK523PAP-N5/CRK523PBP-N5

CRK523PAP-N7.2/CRK523PBP-N7.2 CRK523PAP-N10/CRK523PBP-N10

 The pulse input circuit responds to approximately 500 kHz with a pulse duty of 50%. Notes:

Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C.

(Under 75°C is required to comply with UL or CSA Standards as the motor is recognized as insulation class A.)

• The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 50%.

Introduction

AC Input

CKSTEP ASC DC Inpu

5-Phase RK AC Input

CRK

2-Phas

2-Phase Steppin Motors

5-Phase Stepping Motors

Controllers

Accessories

Installatior

PN Geared Type Motor Frame Size 60 mm

Specifications (RoHS)

Madal	Single St	naft	CRK566AP-N5	CRK566AP-N7.2	CRK566AP-N10	CRK564AP-N25	CRK564AP-N36	CRK564AP-N50	
woder	Double S	haft	CRK566BP-N5	CRK566BP-N7.2	CRK566BP-N10	CRK564BP-N25	CRK564BP-N36	CRK564BP-N50	
Maximum Holding Torque		N∙m	3.5	4	5		8		
Rotor Inertia	J: I	kg∙m²		280×10 ⁻⁷			175×10 ⁻⁷		
Rated Current	A/F	Phase			1	.4			
Basic Step Angle			0.144°	0.1°	0.072°	0.0288°	0.02°	0.0144°	
Gear Ratio			1:5	1:7.2	1:10	1:25	1:36	1:50	
Permissible Torque		N∙m	3.5	4	5		8		
Maximum Torque*		N∙m	7	9	11	16	2	0	
Backlash	arc minute (deg	jrees)		2 (0.034°)		3 (0.05°)			
Angular Transmission Error	arc minute (deg	jrees)	5 (0.084°)						
Permissible Speed Range		r/min	0~600	0~416	0~300	0~120	0~83	0~60	
Power Source					24 VDC±1	0% 2.5 A			
Excitation Mode					Micr	ostep			
Maaa	Motor	kg			1	.5			
Mass	Driver	kg		0.04					
Dimension No.	Motor				[4			
	Driver				[8			

How to read specifications table -> Page C-10

* The value of maximum torque is for gear. For output torque for geared motor, see the speed - torque characteristics.

Note

• Direction of rotation of the motor and that of the gear output shaft are the same.

Speed – Torque Characteristics How to read speed – torque characteristics → Page C-10

Torque [N·m]

fs

5 (50)

0

0(0)

Current [A]

CRK566AP-N5/CRK566BP-N5

Current: 1.4 A/Phase Step Angle: 0.144*/step With Damper D6CL-8.0F: $J_L=140 \times 10^{-7} kg \cdot m$ rmissible Torque forque [N·m] 4 Current [A] Driver Input Current 0 Speed [r/min] 0(0) 5 (50) 10 (100) 15 (150) 20 Resolution1 (200) (Resolution10) Pulse Speed [kHz]

CRK564AP-N25/CRK564BP-N25

CRK566AP-N7.2/CRK566BP-N7.2

Driver Input Curre

15 (150)

200 250

15 (150)

20 (200)

Speed [r/min]

Pulse Speed [kHz]

10 (100)

CRK564AP-N36/CRK564BP-N36

Current: 1.4 A/Phase Step Angle: 0.1^* /step With Damper **D6CL-8.0F**: $J_L=140 \times 10^{-7}$ kg·m

sible . Torque

CRK566AP-N10/CRK566BP-N10

CRK564AP-N50/CRK564BP-N50

• The pulse input circuit responds to approximately 500 kHz with a pulse duty of 50%. Notes

Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C.

(Under 75°C is required to comply with UL or CSA Standards as the motor is recognized as insulation class A.)

• The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 50%.

Harmonic Geared Type Motor Frame Size 20 mm, 42 mm, 60 mm

Specifications (RoHS)

-								
Madal	Single Sha	ft	CRK513PAP-H50*	CRK513PAP-H100*1	CRK543AP-H50	CRK543AP-H100	CRK564AP-H50	CRK564AP-H100
Woder	Double Sha	aft	CRK513PBP-H50*	CRK513PBP-H100*	CRK543BP-H50	CRK543BP-H100	CRK564BP-H50	CRK564BP-H100
Maximum Holding Torque	I	N∙m	0.4	0.6	3.5	5	5.5	8
Rotor Inertia	J: kg	ŀm²	3.1>	< 10 ⁻⁷	52×	10-7	210>	<10 ⁻⁷
Rated Current	A/Ph	ase	0.	35	0.	75	1.	.4
Basic Step Angle			0.0144°	0.0072°	0.0144°	0.0072°	0.0144°	0.0072°
Gear Ratio			1:50	1:100	1:50	1:100	1:50	1:100
Permissible Torque	I	N∙m	0.4	0.6	3.5	5	5.5	8
Maximum Torque*2	I	N∙m	0.9	1.4	8.3	11	18	28
Lost Motion (Load Torque)	arc mir	ute	2 max. (±0.02 N⋅m)	2 max. (±0.03 N⋅m)	1.5 max. (±0.16 N⋅m)	1.5 max. (±0.2 №m)	0.7 max. (±0.28 N⋅m)	0.7 max. (±0.39 N⋅m)
Permissible Speed Range	r/	min	0~90	0~45	0~70	0~35	0~70	0~35
Power Source			24 VDC±1	0% 0.7 A	24 VDC±1	0% 1.4 A	24 VDC±10% 2.5 A	
Excitation Mode					Micro	ostep		
Mass	Motor	kg	0.	08	0.	46	1.08	
Mass	Driver	kg		0.04				
Dimension No.	Motor		[5	[6	[]	7
Dimension No.	Driver				[]	8		

How to read specifications table -> Page C-10

*1 Motor lead wire/connector assembly (0.6 m) is included with the motor and driver package of connector-coupled type.

*2 The value of maximum torque is for gear. For output torque for geared motor, see the speed – torque characteristics.

Notes

• The inertia represents a sum of the inertia of the harmonic gear converted to a motor shaft value, and the rotor inertia.

• Direction of rotation of the motor and that of the gear output shaft are the opposite.

Speed – Torque Characteristics How to read speed - torque characteristics → Page C-10

CRK513PAP-H50/CRK513PBP-H50 CRK513PAP-H100/CRK513PBP-H100

CRK543AP-H100/CRK543BP-H100

Current: 0.35 A/Phase Step Angle: 0.0072°/step

CRK543AP-H50/CRK543BP-H50

CRK564AP-H50/CRK564BP-H50 CRK564AP-H100/CRK564BP-H100

• The pulse input circuit responds to approximately 500 kHz with a pulse duty of 50%. Notes:

Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C (Under 75°C is required to comply with UL or CSA Standards as the motor is recognized as insulation class A.)

In order to prevent fatigue of the gear grease in the harmonic gear, keep the temperature of the gear case under 70°C.

• The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 50%.

Introduction

AC Input AS No.

DC Input ASC

AC Input 5-Phase RK

5-Phas

CM Pha

2-Phas

2-Phase Stepping Motors

5-Phase Stepping Motors

Controllers

Accessories

Installatior

Resolution1 (Resolution10)

Driver Specifications

	Input Mode	Photocoupler input, Input resistance: 220 Ω , Input current: 10~20 mA Photocoupler ON: +4.5~5.25 V, Photocoupler OFF: 0~+1 V (Voltage between terminals)						
Pulse Signal (CW Pulse Signal) Input Signals Rotation Direction Signal (CCW Pulse Signal)	Pulse Signal (CW Pulse Signal)	Operation command pulse signal (CW direction operation command pulse signal when in 2-pulse input mode) Negative logic pulse input Pulse width: 1 μs minimum; Pulse rise/fall: 2 μs maximum, Pulse duty: 50% and below The motor moves one step when the pulse input is switched from photocoupler ON to OFF. Maximum input pulse frequency: 500 kHz (when the pulse duty is 50%)						
	Rotation Direction Signal (CCW Pulse Signal)	Rotation direction signal Photocoupler ON: CW, Photocoupler OFF: CCW CCW direction operation command pulse signal when in 2-pulse input mode, Negative logic pulse input Pulse width: 1 μs minimum; Pulse rise/fall: 2 μs maximum, Pulse duty: 50% and below The motor moves one step when the pulse input is switched from photocoupler ON to OFF. Maximum input pulse frequency: 500 kHz (when the pulse duty is 50%)						
	All Windings Off Signal	When in the "photocoupler ON" state, the output current to the motor is cut off and the motor shaft can be rotated manually. When in the "photocoupler OFF" state, the output current is supplied to the motor.						
	Step Angle Select Signal	Step angle specified by DATA1 when photocoupler OFF, Step angle specified by DATA2 when photocoupler ON						
	Current Cutback Release Signal	When in the "photocoupler ON" state, the automatic current cutback function will not be activated even after the motor stops. When in the "photocoupler OFF" state, the automatic current cutback function will be activated after the motor stops (after approx. 100 ms).						
	Output Mode	Photocoupler, Open-collector output, External use condition: 24 VDC maximum, 10 mA maximum						
Output Signals	Excitation Timing Signal	The signal is output every time the excitation sequence returns to the initial stage "0." (Photocoupler: 0N) Example) 0.72 [°] /step (1 Resolution): Signal is output every 10 pulses. 0.072 [°] /step (10 Resolution): Signal is output every 100 pulses.						
Functions	3	Automatic current cutback, Step angle switch, Pulse input mode switch, Smooth drive, All windings off, Excitation timing						
Cooling N	lethod	Natural ventilation						

General Specifications

Specifications		Motor	Driver			
Insulation Class		Class B (130°C) [Recognized as class A (105°C) by UL Standard]	—			
Insulation Resistance		100 M Ω or more when 500 VDC megger is applied between the windings and the case under normal ambient temperature and humidity.	—			
Dielectric Strength		Sufficient to withstand 1.5 kV* at 50 Hz or 60 Hz applied between the windings and the case for 1 minute under normal temperature and humidity. *1.0 kV for CRK54 0.5 kV for CRK513P, CRK52 PM, CRK52 PM, CRK54 PM, CRK5	_			
Operating Environment	Ambient Temperature	$-10{\sim}+50^\circ\text{C}$ (non-freezing): High-resolution type, High-torque type, Standard type, TH, PL, PN geared type $0{\sim}+40^\circ\text{C}$ (non-freezing): Harmonic geared type	$0\!\sim\!+40^\circ$ C (non-freezing)			
(In Operation)	Ambient Humidity	85% or less (non-condensing)				
	Atmosphere	No corrosive gases, dust, water or oil				
Temperature Rise		Temperature rise of the windings are 80°C or less measured by the resistance change method. (at rated current, at standstill, five phases energized)	_			
Stop Position Accuracy*1		±3 arc minutes (±0.05°), CRK513P : ±10 arc minutes (±0.17°) High-resolution type: ±2 arc minutes (±0.034°)	—			
Shaft Runout		0.05 T.I.R. (mm)*4	—			
Radial Play*2		0.025 mm maximum of 5 N	—			
Axial Play*3		0.075 mm maximum of 10 N				
Concentricity		0.075 T.I.R. (mm)* ⁴	—			
Perpendicularity		0.075 T.I.R. (mm)*4				

*1 This value is for full step under no load. (The value changes with the size of the load.)

*2 Radial Play: Displacement in shaft position in the radial direction, when a 5 N load is applied in the vertical direction to the tip of the motor's shaft.

*3 Axial Play: Displacement in shaft position in the axial direction, when a 10 N load is applied to the motor's shaft in the axial direction.

*4 T.I.R. (Total Indicator Reading): The total dial gauge reading when the measurement section is rotated one revolution centered on the reference axis center.

Note:

• Do not measure insulation resistance or perform the dielectric strength test while the motor and driver are connected.

						GUIIIIIUII	lu Each Type	
ermissibl	e Overhung Loa	d and Per	missible ⁻	Thrust Loa	ad		Unit=N	
Туре	Model	Permissible Overhung Load Distance from Shaft End (mm)					Permissible	
		0	5	10	15	20	- Illiust Loau	
	CRK513P_P CRK523PM_P CRK524PM_P CRK525PM_P CRK523P_P CRK525P_P	25	34	52	_			
High-Resolution Type High-Torque Type Standard Type	CRK544PM_P CRK546PM_P CRK544P_P CRK546P_P CRK543_P CRK543_P CRK544_P CRK544_P	20	25	34	52	_	The permissible thrust load shall be no greater than the motor mass.	AC In
	CRK564PM CRK566PM CRK566PM CRK569PM	90	100	130	180	270	_	put
	CRK564_P CRK566_P CRK569_P	63	75	95	130	190		
H Geared Type	CRK523P P-T7.2 CRK523P P-T10 CRK523P P-T20 CRK523P P-T30	15	17	20	23	-	10	AC Inpu
	CRK543 P-T3.6 CRK543 P-T7.2 CRK543 P-T10 CRK543 P-T10 CRK543 P-T20 CRK543 P-T30	10	14	20	30	-	15	ut
	CRK564_P-T3.6 CRK564_P-T7.2 CRK564_P-T10 CRK564_P-T20 CRK564_P-T20 CRK564_P-T30	70	80	100	120	150	40	
	CRK545 CRK545 CRK545 P-P7.2 CRK545 P-P10	73	84	100	123	_	50	put
pared Type	CRK543 P-P25 CRK543 P-P36 CRK543 P-P50	109	127	150	184	_	50	
area rype	CRK566 P-P5	200	220	250	280	320	100	
	CRK566 P-P7.2 CRK566 P-P10	250	270	300	340	390	100	
	CRK564_P-P25 CRK564_P-P36 CRK564_P-P50	330	360	400	450	520	100	
	CRK523P P-N5 CRK523P P-N7.2 CRK523P P-N10	45	60	80	100	-	20	
eared Type	CRK544 P-N5 CRK544 P-N7.2 CRK544 P-N10	100	120	150	190	-	100	
2.		200	220	250	280	320	100	
	CRK566 P-N10 CRK564 P-N25 CRK564 P-N36	250	270	400	450	<u>390</u> 520	100	
	CRK564 P-N50 CRK513P P-H50 CRK513P P-H100	50	75	-	-	-	60	
onic d Type	CRK543_P-H50 CRK543_P-H100	180	220	270	360	510	220	
	CRK564_P-H50	220	270	440	FEO	720	450	

Dimensions (Unit = mm)

Motor

◇High-Torque Type

1 □20 mm		
Model	Motor Model	Mass (kg)
CRK513PAP	PK513PA	0.05
CRK513PBP	PK513PB	0.05

Each package model comes with a motor lead wire/connector assembly (0.6 m) (UL Style 3265, AWG24).

If you are purchasing only a motor for maintenance purpose, etc., motor lead wire/connector assembly and connector will not be supplied. They must be purchased separately.

→ Page C-255

 Applicable Connector Connector housing: 51065-0500 (MOLEX) Contact: 50212-8100 (MOLEX) Crimp tool: 57176-5000 (MOLEX)

◇High-Resolution Type, High-Torque Type

2 28 mm

Model	Motor Model	L1	L2	Mass (kg)		
CRK523P AP PK523P A		22	-	0.11		
CRK523P BP	PK523P□B	32	42	0.11		
CRK524PMAP	PK524PMA	40	-	0.15		
CRK524PMBP	BP PK524PMB 40		50	0.15		
CRK525P AP	PK525P□A	51.5	-	0.2		
CRK525P BP	PK525PDB	01.0	61.5	0.2		

 \bullet Enter ${\bf M}$ in the box () within the model name in the case of high-resolution type. Each package model comes with a motor leadwire/connector assembly (0.6 m) (UL Style 3265, AWG24).

If you are purchasing only a motor for maintenance purpose, etc., motor lead wire/connector assembly and connector will not be supplied. They must be purchased separately.

→ Page C-255

 Applicable Connector Connector housing: 51065-0500 (MOLEX) Contact: 50212-8100 (MOLEX) Crimp tool: 57176-5000 (MOLEX)

3 **42** mm

Model	Motor Model	L1	L2	Mass (kg)	
CRK544P AP	PK544P□A	20	-	0.2	
CRK544P_BP	PK544P⊡B	- 29	54	0.3	
CRK546P AP	PK546P□A	50	-	0.5	
CRK546P_BP	PK546P⊡B	- 59	74	0.5	

• Enter **M** in the box (\Box) within the model name in the case of high-resolution Type. Each package model comes with a motor lead wire/connector assembly (0.6 m) (UL Style 3265, AWG22).

If you are purchasing only a motor for maintenance purpose, etc., motor lead wire/connector assembly and connector will not be supplied. They must be purchased separately.

→ Page C-255

 Applicable Connector Connector housing: 51103-0500 (MOLEX) Contact: 50351-8100 (MOLEX) Crimp tool: 57295-5000 (MOLEX)

\bigcirc High-Resolution Type

4 60 mm

Model	Motor Model	L1	L2	L3	фD	Mass (kg)	
CRK564PMAP	PK564PMA		-			(
CRK564PMBP	PK564PMB	46.5 69.5	46.5	7 5 1015	0	0.65	
CRK566PMAP	PK566PMA	FC	-	7.5±0.15	8 _{- 0.015}	0.87	
CRK566PMBP	PK566PMB	56	79				
CRK569PMAP	PK569PMA	07 -		07	0.5.015	10 0	1 5
CRK569PMBP	PK569PMB	ŏ/	110	9.5±0.15	IU _ 0.015	1.5	

Each package model comes with a motor lead wire/connector assembly (0.6 m) (UL Style 3266, AWG22).

If you are purchasing only a motor for maintenance purpose, etc., motor lead wire/connector assembly and connector will not be supplied. They must be purchased separately.

→ Page C-255

 Applicable Connector Connector housing: 51144-0500 (MOLEX) Contact: 50539-8100 (MOLEX) Crimp tool: 57189-5000 (MOLEX)

• These dimensions are for double shaft models. For single shaft models, ignore the orange (
) areas.

*The length of machining on double shaft model is 10 \pm 0.25.

* The length of machining on double shaft model is 15 ± 0.25 .

Standard Type

5 42 mm

Model	Motor Model	L1	L2	Mass (kg)	
CRK543AP	PK543NAW	22	-	0.21	
CRK543BP	RK543BP PK543NBW 33		48	0.21	
CRK544AP	PK544NAW	20	-	0.07	
CRK544BP	CRK544BP PK544NBW 39		54	0.27	
CRK545AP	PK545NAW	47	-	0.05	
CRK545BP	PK545NBW	47	62	0.35	

* The length of machining on double shaft model is 15 \pm 0.25.

6 **60** mm

Model	Motor Model	L1	L2	Mass (kg)	
CRK564AP	PK564NAW	16 E	-	0.6	
CRK564BP	PK564NBW	40.5	69.5	0.0	
CRK566AP	PK566NAW	57.5	-	0.0	
CRK566BP	PK566NBW	57.5	80.5	0.0	
CRK569AP	PK569NAW	07	-	1.0	
CRK569BP	PK569NBW	0/	110	1.3	

A-A

♦ TH Geared Type

7 28 mm Gear Ratio Model Motor Model Mass (kg) CRK523PAP-T PK523PA-T 7.2, 10, 20, 30 0.17 **CRK523PBP-T** PK523PB-T

ullet Enter the gear ratio in the box (\Box) within the model name. Each package model comes with a motor lead wire/connector

assembly (0.6 m) (UL Style 3265, AWG24).

If you are purchasing only a motor for maintenance purpose, etc., motor lead wire/connector assembly and connector will not

be supplied. They must be purchased separately.

→ Page C-255

Applicable Connector Connector housing: 51065-0500 (MOLEX) Contact: 50212-8100 (MOLEX) Crimp tool: 57176-5000 (MOLEX)

*10±1	67.5	 20±1	<u>15</u> 012(h7)	0.015(hZ)
5 - ^{0.012} (h7) 4.5±0.15		 12	4.5 ± 0 $\phi 5-0.0$	6±0.5 d10-1
				+
1	9.5			

*The length of machining on double shaft model is 10 ± 0.25 .

8 42 mm

Model	Motor Model	Gear Ratio	Mass (kg)
CRK543AP-T	PK543AW-T□	2 6 7 2 10 20 20	0.25
CRK543BP-T	PK543BW-T□	3.0, 7.2, 10, 20, 30	0.55

ullet Enter the gear ratio in the box (\Box) within the model name.

4×M4×8 Deep

2-Phase Steppin Motors

* The length of machining on double shaft model is 15 ± 0.25 .

These dimensions are for double shaft models. For single shaft models, ignore the orange () areas.

Introduction

AC Input AS No.

DC Input ASC

AC Input

-Phase

5-Phas

♦ TH Geared Type

9 60 mm			
Model	Motor Model	Gear Ratio	Mass (kg)
CRK564AP-T	PK564AW-T□	2 6 7 2 10 20 20	0.05
CRK564BP-T	PK564BW-T□	3.8, 7.2, 10, 20, 30	0.95

• Enter the gear ratio in the box (\Box) within the model name.

◇PL Geared Type

10 **42** mm

Model	Motor Model	Gear Ratio	L1	L2	Mass (kg)
CRK545AP-P	PK545AW-P□	5, 7.2 , 10	74.5	-	0.58
CRK545BP-P	PK545BW-P□			89.5	
CRK543AP-P	PK543AW-P□	25, 36, 50	0.4	-	0.55
CRK543BP-P	PK543BW-P□		04	99	0.55

• Enter the gear ratio in the box (\Box) within the model name.

* The length of machining on double shaft model is 15 ± 0.25 .

11 **G0 mm**

Model	Motor Model	Gear Ratio	L1	L2	Mass (kg)
CRK566AP-P	PK566AW-P□	5, 7.2 , 10	94.5	-	1.3
CRK566BP-P	PK566BW-P□			115.5	
CRK564AP-P	PK564AW-P	DE 24 E0	109 5	-	1.4
CRK564BP-P	PK564BW-P	23, 30, 30	100.0	129.5	1.4

• Enter the gear ratio in the box (\Box) within the model name.

• These dimensions are for double shaft models. For single shaft models, ignore the orange (
) areas.

\bigcirc **PN** Geared Type

12 **28 mm**

Model	Motor Model	Gear Ratio	Mass (kg)
CRK523PAP-N	PK523PA-N□	5 7 9 10	0.25
CRK523PBP-N	PK523PB-N□	5, 7.2, 10	0.25

● Enter the gear ratio in the box (□) within the model name. Each package model comes with a motor lead wire/connector assembly (0.6 m) (UL Style 3265, AWG24). If you are purchasing only a motor for maintenance purpose, etc., motor lead wire/connector assembly and connector will not be

supplied. They must be purchased separately. → Page C-255

Applicable Connector

Connector housing: 51065-0500 (MOLEX) Contact: 50212-8100 (MOLEX) Crimp tool: 57176-5000 (MOLEX)

	<u>*10±1</u>	72.5 62.5		
$+ \frac{\phi 5 - 0.012(h7)}{h}$	-		17 15 000 80 000 80 000 000 000 000 000 000	
		9.5	Х	//

*The length of machining on double shaft model is 10 \pm 0.25.

13 **42** mm

Model	Motor Model	Gear Ratio	Mass (kg)
CRK544AP-N	PK544AW-N□	5 7 9 10	0.56
CRK544BP-N	PK544BW-N□	5, 7.2, 10	0.00

ullet Enter the gear ratio in the box (\Box) within the model name.

* The length of machining on double shaft model is 15 ± 0.25 .

14 **GO mm**

Model	Motor Model	Gear Ratio	L1	L2	Mass (kg)
CRK566AP-N	PK566AW-N□	5 7 2 10	103.5	-	1.5
CRK566BP-N	PK566BW-N□	5,7.2,10		124.5	
CRK564AP-N	PK564AW-N□	25 26 50	100 5	-	1 5
CRK564BP-N	PK564BW-N	23, 30, 30	106.5	129.5	1.5

• Enter the gear ratio in the box (\Box) within the model name.

15 **20** mm

Model	Motor Model	Gear Ratio	Mass (kg)
CRK513PAP-H	PK513PA-H□S	50 100	0.00
CRK513PBP-H	PK513PB-H□S	50, 100	0.00

• Enter the gear ratio in the box (
) within the model name.

Each package model comes with a motor lead wire/connector assembly (0.6 m) (UL Style 3265, AWG24).

If you are purchasing only a motor for maintenance purpose, etc., motor lead wire/connector assembly and connector will not be supplied. They must be purchased separately.

- → Page C-255
- Applicable Connector
- Connector housing: 51065-0500 (MOLEX) Contact: 50212-8100 (MOLEX) Crimp tool: 57176-5000 (MOLEX)

*The position of the output shaft relative to the screw holes on the rotating part is arbitrary.

16 **42 mm**

Model	Motor Model	Gear Ratio	Mass (kg)
CRK543AP-H	PK543AW-H□S	50 100	0.46
CRK543BP-H	PK543BW-H□S	50, 100	0.40

ullet Enter the gear ratio in the box (\Box) within the model name.

*1 The position of the output shaft relative to the screw holes position on the rotating part is arbitrary.

*2 The length of machining on double shaft model is 15 \pm 0.25.

17 **G**0 mm

Model	Motor Model	Gear Ratio	Mass (kg)
CRK564AP-H	PK564AW-H⊡S	50 100	1.00
CRK564BP-H	PK564BW-H□S	50, 100	1.00

• Enter the gear ratio in the box (\Box) within the model name.

* The position of the output shaft relative to the screw holes position on the rotating part is arbitrary.

• These dimensions are for double shaft models. For single shaft models, ignore the orange (
) areas.

Driver

 Image: Image:

Connector Housing (Included) 51103-0200 (MOLEX) 51103-1200 (MOLEX) 51103-0500 (MOLEX)

Contact (Included)
 50351-8100 (MOLEX)

Note:

Be sure to use the included connector for signal and motor and power supply. When assembling the connectors, use the hand-operated crimp tool [57295-5000 (MOLEX)].
The crimp tool is not provided with the package. It must be purchased separately.

Driver lead wire set crimped with connector (sold separately) is available. Driver lead wire set \rightarrow Page C-257

AC Input

DC Input

AC Input

Installation

Connection and Operation

Names and Functions of Driver Parts

1 Power Input Display

Color	Function	When Activated	
Green	Power Supply Indication	Lights when power is on.	

2 Current Adjustment Potentiometers

Indication	Name of Potentiometer	Function	
RUN	Motor Run Current Potentiometer	For adjusting the motor running current	
STOP	Motor Stop Current Potentiometer	For adjusting the motor current at standstill	

3 Function Select Switches

Indication	Switch Name	Function
1P/2P	Pulse Input Mode Switch	Switches between 1-pulse input and 2-pulse input.
OFF/SD	Smooth Drive Function Switch	Enables or disables the smooth drive function.
R2/R1	Resolution Select Switch	Switches the base step angle between R1 and R2.

4 Input/Output Signals

<u> </u>						
Indication	Input/Output	Pin No.	Signal Name	Function		
		1	Pulse Signal	Operation command pulse signal		
		2	(CW Pulse Signal)	input mode.)		
		3	Rotation Direction	Rotation direction signal Photocoupler ON: CW, Photocoupler		
		4	(CCW Pulse Signal)	2-pulse input mode.)		
	Input Signal	5	All Windings Off Signal	This signal is used to turn off the output current to the motor so that the motor shaft can be rotated manually.		
CNO		6				
0112		7	Step Angle Select Signal	Switches to step angle set in DATA1 and DATA2.		
		8				
		9	Current Cutback	This signal is used to disable the automatic current cutback		
		10	Release Signal	function.		
	Output Signal	11	Excitation Timing Signal	The signal is output every time the excitation sequence returns to the initial stage "0."		
		12				

5 Step Angle Setting Switch

Indication	Signal Name	Function
DATA1	Step Angle	Each switch can be set to the desired step angle from the 16 step
DATA2	Setting Switch	angles.

R1			R2				
DATA1 DATA2	Microstep/ Step 1	Resolution 1	Step Angle 1	DATA1 DATA2	Microstep/ Step 2	Resolution 2	Step Angle 2
0	1	500	0.72°	0	×2.5	200	1.8°
1	2	1000	0.36°	1	×1.25	400	0.9°
2	2.5	1250	0.288°	2	1.6	800	0.45°
3	4	2000	0.18°	3	2	1000	0.36°
4	5	2500	0.144	4	3.2	1600	0.225°
5	8	4000	0.09°	5	4	2000	0.18°
6	10	5000	0.072°	6	6.4	3200	0.1125°
7	20	10 000	0.036°	7	10	5000	0.072°
8	25	12 500	0.0288°	8	12.8	6400	0.05625°
9	40	20 000	0.018°	9	20	10 000	0.036°
А	50	25 000	0.0144°	А	25.6	12 800	0.028125°
В	80	40 000	0.009°	В	40	20 000	0.018°
С	100	50 000	0.0072°	С	50	25 000	0.0144°
D	125	62 500	0.00576°	D	51.2	25 600	0.0140625°
E	200	100 000	0.0036°	E	100	50 000	0.0072°
F	250	125 000	0.00288°	F	102.4	51 200	0.00703125°

Notes:

 The step angle is calculated by dividing the basic step angle by the number of microstep. The above figures are based on a basic step angle of 0.72°.

• With the high-resolution type, the basic step angle and resolution are 0.36° and 1000 (microstep/step: 1),

respectively.

• If you are using a geared type, the step angle divided by the gear ratio becomes the actual step angle.

• The number of microstep that can be switched by the C/S (step angle select) signal is limited to those selected in step angles 1 and 2.

 Do not change the C/S signal input or step angle setting switch while the motor is operating. It may cause the motor to misstep and stop.

Introduction

AS No.

ASC

AC Input

DC Inpu

5-Phase RK AC Input

Connection Diagrams

Description of Input/Output Signals

Pulse (CW) and Rotation Direction (CCW) Input Signal

\Diamond Input Circuit and Sample Connection

◇Pulse Waveform Characteristics

1-Pulse Input Mode

2-Pulse Input Mode

- *1 The shaded area indicates when the photocoupler diode is ON. The motor moves when the photocoupler state changes from ON to OFF.
- *2 The minimum interval time when changing rotation direction 10 μs is shown as a response time of circuit. This value varies greatly depending on the motor type and load inertia.

Keep the input signal voltage to 5 VDC. When the voltage is equal to 5 VDC, the external resistor R₁ is not necessary. When the voltage is above 5 VDC, connect R₁ as shown in the diagram to keep the input current to 20 mA or below.

When 5 VDC or more is applied without the external resistor, the internal components may be damaged.

Example) If V_0 is 24 VDC, R1 must be 1.5 to 2.2 k\Omega, 0.5 W or more.

Keep the output signal voltage and current 5 VDC or below and 10 mA or below, respectively. If these specifications are exceeded, the internal components may be damaged. Check the specifications of the connected equipment. When the current is above 10 mA, connect the external resistor R₂ as shown in the diagram to keep it to 10 mA or below.

◇Power Supply

Use a power supply that can supply sufficient input current. When power supply capacity is insufficient, a decrease in motor output can cause the following malfunctions: Motor does not rotate properly at high-speed.
Slow motor startup and stopping.

Ones on Wiring Ones

- Use twisted-pair wires [AWG24 to 22 (0.2 to 0.3 mm²)] with a length of 2 m or less for the signal lines.
- Note that as the length of the pulse signal line increases, the maximum transmission frequency decreases. Technical reference → Page F-46
- Use AWG22 (0.3 mm²) cables for the power supply lines. When assembling the connectors, use the hand-operated crimp tool for contact or the crimped driver lead wire set cable (sold separately). The crimp tool is not provided with the package. It must be purchased separately.
- Signal lines should be kept at least 2 cm away from power lines (power supply lines and motor lines). Do not bind the signal line and power line together.
- If noise generated by the motor cables or power supply cables causes a problem, try shielding the cables or insert ferrite cores in the cables.
- Incorrect connection of DC power input will lead to driver damage. Make sure that the polarity is correct before turning power on.

◇Pulse Signal Characteristics

 Keep the pulse signal at the "photocoupler OFF" state when no pulses are being input.

- In 1-pulse input mode, leave the pulse signal at rest
- ("photocoupler OFF") when changing rotation directions. In 2-pulse input mode, do not input a CW pulse and CCW pulse
- simultaneously.

All Windings Off (A.W.OFF) Input Signal Step Angle Select (C/S) Input Signal Current Cutback Release (C.D.INH) Input Signal

◇Input Circuit and Sample Connection

\bigcirc All Windings Off (A.W.OFF) Input Signal

Inputting this signal puts the motor in a non-excitation (free) state.
This signal is used to move the motor shaft with external force or perform positioning manually. The photocoupler must be "OFF" when the motor is operating.

The shaded area indicates that the motor provides holding torque in proportion to standstill current set by STOP switch.

•Switching the "All Windings Off" (A.W.OFF) signal from "photocoupler ON" to "photocoupler OFF" does not alter the excitation sequence. When the motor shaft is manually adjusted with the "A.W.OFF" signal input, the shaft will shift up to ±3.6° (Geared type: ±3.6°/gear ratio) from the position set after the "A.W.OFF" signal is released. Controllers

Accessories

Installatior

- •You may select two step angles with the step angle setting switches DATA1 and DATA2.
- •When the signal is at "photocoupler OFF," a step angle set by DATA1 is selected; at "photocoupler ON," DATA2 is selected.

Example: Changing the step angle from 0.072° to 0.72°.

- Be sure to change step angle setting inputs only when the pulse signals are at rest. Switching while moving may cause a positional error of the motor.
- •When the "Excitation Timing" signal is used, adjust the number of pulses so that the motor can operate with angles that are multiples of 7.2°. The "Excitation Timing" signal output may become impossible for some combinations of step angles.
- Example: After operate 9 pulses with 0.072°/step setting, change the step angle 0.72°/step and operate with 1 pulse. In this case, "Excitation Timing" signal will not be output because step "0" position is skipped.

* "Excitation Timing" signal is only output at step "0" sequence.

When this signal is in the "photocoupler ON" state, the automatic current cutback function is disabled. When this signal is in the "photocoupler OFF" state, the automatic current cutback function will be activated after the motor stops (after approx. 100 ms).
The photocoupler must be "OFF" except when the running

current is adjusted.

Excitation Timing (TIMING) Output Signal

\diamondsuit Output Circuit and Sample Connection

- •The "Excitation Timing" signal is output to indicate when the motor excitation (current flowing through the winding) is in the initial stage (step "0" at power up).
- •The "Excitation Timing" signal is output simultaneously with a pulse input each time the excitation sequence returns to step "0." The excitation sequence will complete one cycle for every 7.2° rotation of the motor output shaft (basic step angle 0.72°).

Microstep/step 1: Signal is output once every 10 pulses. Microstep/step 10: Signal is output once every 100 pulses.

Timing chart at 0.72°/step (microstep/step 1)

* When connected as shown in the sample connection, the signal will be "photocoupler ON" at step "0."

Note:

 When power is turned ON, the excitation sequence is reset to step "0" and the "Excitation Timing" signal is output.

The section indicates that the photocoupler diode is emitting light.

- *1 Switching time to change direction (1-pulse input mode), and switching time to change CW, CCW pulse (2-pulse input mode) 10 µs is shown as a response time of circuit. The motor may need more time.
- *2 Depends on load inertia, load torque, and starting frequency.
- *3 Never input a pulse signal immediately after switching the "All Windings Off" signal to the "photocoupler OFF" state. The motor may not start.
- *4 Wait at least 5 seconds before turning on the power again.

Timing Chart

Introduction

Controllers

Adjusting the Current

Adjusting the Motor Current

Use the "RUN" potentiometer to decrease the current and suppress the temperature rise in the motor/driver, or when there is sufficient motor torque and you want to suppress vibration by lowering the current.

Use the "STOP" potentiometer to readjust the current at motor standstill in relation to the holding-brake force of the motor.

Factory settings

Running current: Rated current

Current at motor standstill: Approx. 50% of rated current Follow the procedure below to adjust the motor current.

Connect a DC ammeter as illustrated below.

Connect a DC ammeter in series to the blue motor lead wire and motor connector pin No. 1. Set all driver input signals to the "photocoupler OFF" state.

Do not connect the red motor lead wire to connector pin No. 2, and black motor lead wire to connector pin No. 5.

Note

Do not input pulse signals.

* Electric shock may result if the red and black motor lead wires contact each other. Insulate these motor lead wires to prevent electric shock.

To adjust the motor running current, follow the procedure below:

- 1. Set the current cutback release signal to the "photocoupler ON" state. Keep other signals in the "photocoupler OFF" state.
- 2. Turn on the power to the driver.
- 3. Use the "RUN" potentiometer to adjust the motor's running current.
- 4. When the power is turned on, the value measured by the ammeter represents the total current in two phases through the blue motor lead wire. The current for one phase is equivalent to one-half the ammeter value. (Example: To set the current to 1.0 A/phase, adjust the current level until the ammeter reads 2.0 A.)
- 5. When the running current has been adjusted, set the current cutback release signal to the "photocoupler OFF" state.

Notes:

Be sure to use the motor at the rated current or below.
 Adjusting the running current will also change the current at standstill.

$\diamondsuit \mathsf{Adjusting}$ the Current at Motor Standstill

To adjust the current at motor standstill, follow the procedure below:

- 1. Set the current cutback release signal to the "photocoupler OFF" state. Keep other signals in the "photocoupler OFF" state.
- 2. Turn on the power to the driver.
- 3. Use the "STOP" potentiometer to adjust the motor current at standstill.
- 4. When the power is turned on, the value measured by the ammeter represents the total current in two phases through the blue motor lead wire. The current for one phase is equivalent to one-half the ammeter value. (Example: To set the current to 1.0 A/phase, adjust the current level until the ammeter reads 2.0 A.)

Holding Torque	Maximum Holding Torque [N·m] \times Current at Standstill [A]
[Ň·m]	Motor Rated Current [A]

Notes:

 Always set the running current first, turn off the driver power and turn it back on, and then set the current at standstill. Setting the running current after current at standstill may change the current setting at standstill.

 Setting the current at motor standstill too low may affect the starting of the motor or the position-holding action.

List of Motor and Driver Combinations

Model names for motor and driver combinations are shown below.

Туре	Model	Motor Model	Driver Model	Туре	Model	Motor Model	Driver Model
High-Resolution Type	CRK523PMAP CRK523PMBP CRK524PMAP CRK524PMAP CRK525PMAP CRK525PMBP CRK544PMAP CRK544PMBP CRK546PMAP CRK546PMBP	PK523PMA* PK523PMB* PK524PMA* PK524PMA* PK525PMA* PK525PMB* PK544PMA* PK544PMA* PK546PMA* PK546PMA*	CRD5103P CRD5107P	PL Geared Type	CRK545AP-P5 CRK545BP-P5 CRK545AP-P7.2 CRK545BP-P7.2 CRK545AP-P10 CRK545BP-P10 CRK543AP-P25 CRK543BP-P25 CRK543AP-P36 CRK543BP-P36 CRK543AP-P36	PK545AW-P5 PK545BW-P5 PK545BW-P7.2 PK545BW-P7.2 PK545BW-P10 PK545BW-P10 PK543AW-P25 PK543BW-P25 PK543BW-P36 PK543BW-P36 PK543BW-P36	CRD5107P
	CRK564PMAP CRK564PMBP CRK566PMAP CRK566PMBP CRK569PMAP CRK569PMBP	PK564PMA* PK564PMB* PK566PMA* PK566PMB* PK569PMA* PK569PMB*	CRD5114P		CRK566AP-P5 CRK566BP-P5 CRK566BP-P5 CRK566AP-P7.2 CRK566AP-P10 CRK566AP-P10 CRK566AP-P25 CRK564AP-P25 CRK564AP-P36 CRK564AP-P36	PK543BW-P50 PK566AW-P5 PK566BW-P5 PK566BW-P7.2 PK566BW-P7.2 PK566AW-P10 PK566AW-P10 PK564AW-P25 PK564AW-P25 PK564AW-P36 PK564BW-P36 PK564AW-P50	CRD5114P
High-Torque Type	CRK513PAP CRK513PBP CRK523PAP CRK523PBP CRK525PAP CRK525PBP	PK513PA* PK513PB* PK523PA* PK523PB* PK525PA* PK525PB*	CRD5103P				
Standard Type	CRK544PAP CRK544PBP CRK546PAP CRK546PBP CRK543AP CRK543BP CRK543BP CRK544AP	PK544PA* PK544PB* PK546PA* PK546PB* PK543NAW PK543NBW PK544NAW	CRD5107P CRD5114P		CRK523PAP-N5 CRK523PAP-N5 CRK523PBP-N5 CRK523PAP-N7.2 CRK523PAP-N7.2 CRK523PAP-N10	PK523PA-N5* PK523PB-N5* PK523PB-N5* PK523PA-N7.2* PK523PB-N7.2* PK523PA-N10*	CRD5103P
	CRK544BP CRK545AP CRK545BP CRK564AP CRK564BP CRK566BP CRK566BP	PK544NBW PK545NAW PK545NBW PK564NAW PK566NAW PK566NAW PK566NBW			CRK523PBP-N10 CRK544AP-N5 CRK544BP-N5 CRK544AP-N7.2 CRK544BP-N7.2 CRK544BP-N10 CRK544BP-N10	PK523PB-N10* PK544AW-N5 PK544BW-N5 PK544AW-N7.2 PK544BW-N7.2 PK544AW-N10 PK544BW-N10	CRD5107P
TH Geared Type	CRK5509AP CRK5539BP CRK523PBP-T7.2 CRK523PBP-T7.2 CRK523PAP-T10 CRK523PAP-T10 CRK523PAP-T20 CRK523PAP-T30 CRK523PAP-T30	PK569NAW PK569NBW PK523PA-T7.2* PK523PA-T10* PK523PB-T10* PK523PB-T10* PK523PB-T20* PK523PA-T30* PK523PA-T30* PK523PB-T30*	CRD5103P	PN Geared Type	CRK566AP-N5 CRK566AP-N5 CRK566AP-N7.2 CRK566AP-N10 CRK566AP-N10 CRK566AP-N10 CRK564AP-N25 CRK564AP-N36 CRK564AP-N36 CRK564AP-N50 CRK564AP-N50	PK566AW-N5 PK566BW-N5 PK566AW-N7.2 PK566BW-N10 PK566BW-N10 PK566BW-N25 PK564BW-N25 PK564BW-N36 PK564BW-N36 PK564BW-N50 PK564BW-N50	CRD5114P
	CRK543AP-T3.6 CRK543BP-T3.6 CRK543AP-T7.2 CRK543BP-T7.2 CRK543BP-T10 CRK543AP-T10 CRK543AP-T20 CRK543AP-T20 CRK543AP-T30	PK543AW-13.6 PK543BW-T3.6 PK543BW-T7.2 PK543BW-T7.2 PK543BW-T10 PK543BW-T10 PK543BW-T10 PK543BW-T20 PK543AW-T20 PK543AW-T30	CRD5107P	Harmonic Geared	CRK513PAP-H50 CRK513PBP-H50 CRK513PAP-H100 CRK513PBP-H100 CRK543AP-H50 CRK543BP-H50 CRK543BP-H50	PK513PA-H50S* PK513PB-H50S* PK513PA-H100S* PK513PB-H100S* PK543AW-H50S PK543AW-H50S PK543AW-H50S	CRD5103P
	CRK564AP-T3.6 CRK564AP-T3.6 CRK564AP-T3.6 CRK564AP-T7.2 CRK564BP-T7.2	PK543BW-T30 PK564AW-T3.6 PK564BW-T3.6 PK564AW-T7.2 PK564BW-T7.2	CRD5114P	iyyu	CRK5643BP-H100 CRK564AP-H50 CRK564BP-H50 CRK564AP-H100 CRK564BP-H100	PK543BW-H100S PK564AW-H50S PK564BW-H50S PK564BW-H100S PK564BW-H100S	CRD5114P
	CRK564AP-T10 CRK564BP-T10 CRK564AP-T20 CRK564BP-T20 CRK564AP-T30 CRK564BP-T30	PK564AW-T10 PK564BW-T10 PK564AW-T20 PK564BW-T20 PK564AW-T30 PK564BW-T30		 If you are purchasing only a motor for maintenance purpose, etc., motor lead wire/ connector assembly and connector will not be supplied. They must be purchased separately. They are available as accessories. Motor lead wire/connector assembly, motor connector set → Page C-255 			